[Yandex.Algorithm 2018, second qualification round E]Bonsai

版权声明:本文是蒟蒻写出来的,神犇转载也要说一声哦! https://blog.csdn.net/WerKeyTom_FTD/article/details/79755553

题目大意

两颗树,有根带标号,儿子有顺序。
你每次操作可以选择一颗树,然后执行二选一:
1、删除一个叶子。
2、将某个节点相邻两个儿子合并,前面那个节点的儿子排在前面,后面那个节点的儿子排在后面。
问至少操作多少次能使得两棵树同构。

做法

将树用深度序表示。
两棵树同构当且仅当深度序同构。
然后考虑两种操作对树的影响,都是删除一个数。
但是删除一个树不只能被表示成这两种,还有一种是一个单儿子节点被删。
如果存在一种最优方案两个序列最终变成的深度序无法构出一颗树,一定是执行了上面那个操作。
不如转移到儿子下面删,步数不变,仍然同构。
因此接下来只需要考虑删最少的数,使得两个深度序相同。
做一个最长公共子序列即可。

#include<cstdio>
#include<algorithm>
#define fo(i,a,b) for(i=a;i<=b;i++)
using namespace std;
const int maxn=5000+10;
int h[maxn],go[maxn],nxt[maxn],a[maxn],b[maxn],c[maxn];
int f[maxn][maxn];
int i,j,k,l,t,n,m,tot,top;
void add(int x,int y){
    go[++tot]=y;
    nxt[tot]=h[x];
    h[x]=tot;
}
void dfs(int x,int y){
    c[++top]=y;
    int t=h[x];
    while (t){
        dfs(go[t],y+1);
        t=nxt[t];
    }
}
int main(){
    scanf("%d",&n);
    fo(i,2,n){
        scanf("%d",&j);
        add(j,i);
    }
    top=0;
    dfs(1,0);
    fo(i,1,n) a[i]=c[i];
    scanf("%d",&m);
    fo(i,1,m) h[i]=0;
    tot=0;
    fo(i,2,m){
        scanf("%d",&j);
        add(j,i);
    }
    top=0;
    dfs(1,0);
    fo(i,1,m) b[i]=c[i];
    fo(i,1,n)
        fo(j,1,m){
            f[i][j]=max(f[i-1][j],f[i][j-1]);
            if (a[i]==b[j]) f[i][j]=max(f[i][j],f[i-1][j-1]+1);
        }
    printf("%d\n",n+m-2*f[n][m]);
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页