文本清洗,nltk

import pandas as pd
import re
import nltk
from nltk.corpus import stopwords

# 读取Excel文件
file_path = 'Laos news overall.xlsx'
sheet_name = 'Sheet1'  # 修改为实际的工作表名称
data = pd.read_excel(file_path, sheet_name=sheet_name)

# 清除NaN值,将它们替换为一个空字符串
data['内容'].fillna('', inplace=True)

# NLTK停用词
nltk.download('stopwords')
stop_words = set(stopwords.words('english'))

# 使用NLTK进行文本清洗和分词
def preprocess_text(text):
    text = re.sub(r'[^\w\s]', '', text)  # 去除标点符号
    text = text.lower()  # 转换为小写
    tokens = nltk.word_tokenize(text)  # 分词
    tokens = [word for word in tokens if word not in stop_words]  # 去除停用词
    return " ".join(tokens)

data['cleaned_content'] = data['内容'].apply(preprocess_text)

# 将分词结果保存为CSV文件
data.to_csv('news_cleaned_tokens.csv', index=False)
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值