矩阵乘法的并行计算

转载:http://blog.csdn.net/realxie/article/details/7260072

设两个矩阵A和B,大小分别为M * N 和 N * P, 如果C = A * B, 则C的大小为M * P。

矩阵算法的算法表示,伪代码如下:

  1. for (i = 0; i < M; ++i){  
  2.     for (j = 0; j < P; ++j){  
  3.         C[i][j] = 0;  
  4.         for (k = 0; k < N; ++k){  
  5.             C[i][j] += A[i][k] * B[k][j];  
  6.         }  
  7.     }  
  8. }  

从上面的算法中可以看出该算法的时间复杂度为O(M*N*P),当M,N,P都非常大时该计算将非常耗时。那么如何将上面的串行算法转换成并行算法呢?


从上面的三层循环中可以看出最外层的循环是独立的,即对C[i][*]的计算不依赖于任何C[ii][*]的计算,因此我们可以非常容易将最外层的循环转换成并行。

  1. #prama omp parallel for num_threads(CORE_NUM)  
  2. for (i = 0; i < M; ++i){  
  3.     for (j = 0; j < P; ++j){  
  4.         C[i][j] = 0;  
  5.         for (k = 0; k < N; ++k){  
  6.             C[i][j] += A[i][k] * B[k][j];  
  7.         }  
  8.     }  
  9. }  

但是这里有一个局限,如果假设cpu的核数CORE_NUM > M,同样无法充分利用所有的计算资源。


进一步分析, 由于C矩阵的大小为M * P,那么我们能不能将C的计算下平均分配到CORE_NUM个核心上呢,即每个核分配ceil(M*P/CORE_NUM)个计算任何,即将上面的第一和第二层并行化。

首先将C转换成一维的数组T[M*P] , 则C[i][j] = T[i * M + j], 反过来T[z] = C[z/M] [ z %P]。

故进一步的并行算法为:

  1. #prama omp parallel for num_threads(NUM)  
  2. for (z = 0; z < M * P; ++z){  
  3.         i = z / P;  
  4.         j = z % P;  
  5.         C[i][j] = 0;  
  6.         for (k = 0; k < N; ++k){  
  7.             C[i][j] += A[i][k] * B[k][j];  
  8.     }  
  9. }  

性能优化。

看最里面一层的计算

  1. for (k = 0; k < N; ++k){  
  2.     C[i][j] += A[i][k] * B[k][j];  
由于内存中二维数组是以行优先进行存储的,因此B[k][j]存在严重的cache命中率问题,解决这个问题的方法是也将B进行一次沿对角线进行翻转,使得最里面的计算变成

  1. for (k = 0; k < N; ++k){  
  2.     C[i][j] += A[i][k] * B[j][k];  

另外一点需要注意的就是C[i][j] += A[i][k] * B[j][k];计算时的伪共享问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值