预备知识 导数
图1:导数为零的三种点
如图 1 , 若一个一元函数 在某区间内处处可导(即对区间内的任何
导数
都存在),若区间内存在某些
能使
( 即在这些点处函数曲线的斜率为零), 这样的点被称为驻点.
而从函数曲线来看,驻点又分为三类: 极大值,极小值,鞍点. 我们以为中心取一个小区间, 如果这个区间足够小, 那么容易看出对于极大值点,
在小区间内递减, 对于鞍点,
在小区间内恒为非负或恒为非正, 对于极小值点,
在小区间内递增. 所以为了判断驻点的类型, 我们可以在驻点处求函数的二阶导数
. 假设二阶偏导存在, 如果
, 那么
是极大值点, 如果
, 则
是鞍点, 如果
,
是极小值点.
另外, 若某个极小值点是整个考察区间中函数值最小的点, 它就被称为最小值点, 若某个极大值点是该区间中函数值最大的点, 它就被称为最大值点.
例1
二次函数的导函数为
, 所以唯一的驻点为
. 函数的二阶导数是一个常数
, 所以当
时驻点是唯一的极小值点, 即最小值点. 同理, 当
时驻点是最大值点.
图2:例 2 函数图
例2
函数的一阶导函数为
, 若我们只考察区间
, 唯一的驻点为
. 函数的二阶导函数
在驻点处的值为
, 所以该驻点为当前区间的最小值点( 图 2 ).
例3
函数的一阶导函数为
, 唯一的驻点为
. 函数的二阶导函数
在驻点处的值为
, 所以该驻点是一个鞍点.