高等数学学习笔记 ☞ 单调性、凸凹性、极值、最值、曲率

1.  单调性


1. 单调性定义:设函数f(x)在区间I上有定义,对于区间I上任意两点x_{1},x_{2},若:

    ①:当x_{1}<x_{2}时,恒有f(x_{1}) < f(x_{2}),则称函数f(x)在区间I上单调递增。

    ②:当x_{1}<x_{2}时,恒有f(x_{1}) > f(x_{2}),则称函数f(x)在区间I上单调递减。

    简记:同增异减。

2. 单调性判定方法:设函数f(x)在区间I上可导,若在区间I上:

    ①:{f}'(x) >0,则称函数f(x)在区间I上单调递增。

    ②:{f}'(x)<0,则称函数f(x)在区间I上单调递减。

 3. 常见误区点:

(1)已知函数f(x)=x^{3},那么其导数为{f}'(x)=3x^{2}

         当x=0时,{f}'(0)=0;当x\neq 0时,{f}'(x)=3x^{2}> 0

         此时函数f(x)(-\infty ,+\infty )是单调递增的。

说明:函数在区间上有限个点的导数为零,是不影响函数整体单调性的,故写区间时不需要纠结有限的点。

(2)已知函数f(x)=e^{x}-x,那么其导数为{f}'(x)=e^{x}-1

         当{f}'(x) = e^{x}-1>0时,函数f(x)(0,+\infty )是单调递增的。

         当{f}'(x) = e^{x}-1<0时,函数f(x)(-\infty,0 )是单调递减的。

说明:函数的单调性研究的是区间上的单调性,单独的点不具备单调性的定义,所以写区间时包不包含该点都一样。

           但当某个点是使得函数没有意义的点,那肯定就不能包含了。

(3)已知函数f(x)=\frac{1}{x},则:

          在(0,+\infty )是单调递减的,在(-\infty,0 )是单调递减的。

          此时函数f(x)(-\infty,0 )(0,+\infty )是单调递减的。

说明:写区间时应该写成(-\infty,0 )(0,+\infty ),而不能写成(-\infty,0 )\cup (0,+\infty ),因为这样写不满足单调性的定义,即:

           当x_{1}<x_{2}时,无法保证f(x_{1}) > f(x_{2}),所以此时的单调区间不能写成这种集合的形式。

4. 单调性求解过程:

    第一步:确认函数f(x)的定义域,并求解函数f(x)的一阶导;

    第二步:求解令{f}'(x)=0的点(驻点);

    第三步:判断{f}'(x)在上述点两侧的正负情况,画表进行单调性确认。

备注:表格形式如下所示:

x(-\infty ,-1)-1(1,1)1(1,+\infty )
{f}'(x)+0-0+
f(x)单调递增单调递减单调递增


2.  凸凹性


1. 凸凹性定义:设函数f(x)在区间I上有定义,对于区间I上任意两点x_{1},x_{2},若:

    ①:f(\frac{x_{1}+x_{2}}{2})>\frac{f(x_{1})+f(x_{2})}{2},则称函数f(x)在区间I上是凸函数。

    ②:f(\frac{x_{1}+x_{2}}{2})<\frac{f(x_{1})+f(x_{2})}{2},则称函数f(x)在区间I上是凹函数。

说明:函数的凸凹性是相对来说的,不同的书对凸凹性的定义可能是相反的。

2. 凸凹性判定方法:设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内一阶、二阶可导,则:

    ①:若{f}''(x)<0,则称函数f(x)在闭区间[a,b]上是凸函数。

    ②:若{f}''(x)>0,则称函数f(x)在闭区间[a,b]上是凹函数。

    简记:正凹负凸。

 3. 常见误区点:举例说明:已知函数f(x)=x^{3},那么其导数为{f}''(x)=6x

     当x=0时,{f}''(0)=0;当x> 0时,{f}''(x)> 0;当x< 0时,{f}''(x)< 0

     此时函数f(x)(-\infty,0 )是凸函数,f(x)(0,+\infty )是凹函数。

说明:

①:函数在区间上有限个点的二阶导数为零,是不影响整体函数的凸凹性的,故写区间时不需要考虑有限的点。

②:函数的凸凹性研究的是区间上的凸凹性,单独的点不具备凸凹性的定义,所以写区间时是否包含该点都一样。

       但当某个点是使得函数没有意义的点,那肯定就不能包含了。

4. 拐点:已知函数f(x),若函数f(x)的图像过某点时,函数f(x)的凸凹性发生改变,那么该点称为函数f(x)的拐点。

说明:

①:拐点是一个二维的点(x_{0},f(x_{0})),且该点在函数f(x)的图像上。

②:函数f(x)是可以不存在拐点的,但依然可以具备凸凹性,如f(x)=\frac{1}{x}

5. 拐点求解过程:

    第一步:确认函数f(x)的定义域,并求解函数f(x)的一阶导和二阶导;

    第二步:求解令{f}''(x)=0的点以及令{f}''(x)的不可导点;

    第三步:判断{f}''(x)在上述点两侧的正负情况,画表进行拐点确认。

备注:表格形式如下所示:

x(-\infty ,-1)-1(-1,1)1(1,2)2(2,+\infty )
{f}''(x)+0-0-不存在+
f(x)凹函数拐点(-1,f(-1))凸函数不是拐点凸函数拐点(2,f(2))凹函数


3.  极值


1. 极值与极值点:极大值(点)与极小值(点)

(1)极大值:设函数f(x)在点x_{0}的邻域内有定义,若在x_{0}的去心邻域内有f(x)<f(x_{0}),则称f(x_{0})是函数f(x)的极大值。

(2)极小值:设函数f(x)在点x_{0}的邻域内有定义,若在x_{0}的去心邻域内有f(x)>f(x_{0}),则称f(x_{0})是函数f(x)的极小值。

(3)极大值点:函数f(x)取得极大值时所对应的点x_{0},称为极大值点。

(4)极小值点:函数f(x)取得极小值时所对应的点x_{0},称为极小值点。

说明:

①:极大值或极小值的定义具有局部性,仅在点x_{0}的邻域内生效。

②:函数f(x)的极大值与极小值是可以不存在的。

③:若函数f(x)的极大值与极小值存在,那么在整个定义域内极大值与极小值不是唯一的。

④:若函数f(x)的极大值与极小值存在,那么在整个定义域内极大值与极小值的大小关系是不确定的。

⑤:若函数f(x)的极大值与极小值存在,那么在整个定义域内极大值点与极小值点不是唯一的。

2. 极大值(点)与极小值(点)的判定:

(1)必要条件:若函数f(x)在点x_{0}处可导,且可以取到极值,则{f}'(x_{0})=0。(反过来不成立,需要进一步讨论)

备注:极值点包含两类:驻点,不可导点。

(2)第一充分条件:若函数f(x)在点x_{0}处连续,且在点x_{0}的去心邻域内可导,

  ①:当x\in (x_{0}-\delta ,x_{0})时,有{f}'(x)>0;当x\in (x_{0} ,x_{0}+\delta)时,有{f}'(x)<0,则函数f(x)在点x_{0}处取得极大值。

  ②:当x\in (x_{0}-\delta ,x_{0})时,有{f}'(x)<0;当x\in (x_{0} ,x_{0}+\delta)时,有{f}'(x)>0,则函数f(x)在点x_{0}处取得极小值。

  ③:若在点x_{0}的去心邻域内,{f}'(x)的符号不变,则函数f(x)在点x_{0}处取不到极值。

备注:极值(点)求解过程:

第一步:确认函数f(x)的定义域,并求解函数f(x)的一阶导;

第二步:求解令{f}'(x)=0的点(驻点)以及{f}'(x)的不可导点;

第三步:判断{f}'(x)在上述点两侧的正负情况,画表进行极大值(点)、极点值(点)确认。表格形式如下所示:

x(-\infty ,-1)-1(-1,1)1(1,2 )2(2,+\infty )
{f}'(x)+不存在-0+0+
f(x)单调递增极大值单调递减极小值单调递增无极值单调递增

(3)第二充分条件:若函数f(x)在点x_{0}处二阶可导,且{f}'(x_{0})=0,{f}''(x_{0})\neq 0,则:

  ①:若{f}''(x_{0})<0,则函数f(x)在点x_{0}处取得极大值。

  ②:若{f}''(x_{0})>0,则函数f(x)在点x_{0}处取得极小值。

备注:不准确但便于记忆的理解方式:

①:当{f}''(x_{0})<0时,为凸函数,又知{f}'(x_{0})=0,则函数f(x)在点x_{0}处取得极大值。

②:当{f}''(x_{0})>0时,为凹函数,又知{f}'(x_{0})=0,则函数f(x)在点x_{0}处取得极小值。

说明:

①:一般不建议用第二充分条件求极值,比较麻烦。②:当{f}''(x_{0})=0时,不能使用第二充分条件判断极大、小值(点)。


4.  最值


1. 最值与最值点:最大值(点)与最小值(点) \rightarrow 高等数学学习笔记 ☞ 连续函数的运算与性质_连续性的四则运算法则-CSDN博客

备注:最值点包含三类:驻点,不可导点,区间端点。

2. 最值(点)求解过程:

    第一步:确认函数f(x)的定义域,并求解函数f(x)的一阶导;

    第二步:求解令{f}'(x)=0的点(驻点)、{f}'(x)的不可导点以及函数f(x)的区间端点;

    第三步:将上述点分别带入函数f(x),求解对应的函数值,然后找出最大值与最小值。

小贴士:

(1)驻点:令一阶导数为零的点。

(2)不可导点:函数导数不存在的点。共包含四种,分别为:

     ①:函数f(x)没有定义的点,如f(x)=\frac{1}{x}x=0处。

     ②:函数f(x)不连续的点,如分段函数f(x)=x(x<0),f(x)= e^{x}(x\geq 0)x=0处。

     ③:函数f(x)连续点,但是此点函数图像不光滑,为尖点,左右两边的斜率不一样,如f(x)=|x|x=0处。

     ④:有定义,连续、光滑,但是斜率是无穷大。如x^{2}+y^{2}=r^{2}x=\pm r处。


5.  曲率


1. 水平渐近线、垂直渐近线及斜渐近线:

(1)水平渐近线:若\displaystyle \lim_{x\rightarrow \infty }f(x)=A\displaystyle \lim_{x\rightarrow +\infty }f(x)=A\displaystyle \lim_{x\rightarrow -\infty }f(x)=A,则称y=A为水平渐近线。

(2)垂直渐近线:若\displaystyle \lim_{x\rightarrow a^{-} }f(x)=\infty\displaystyle \lim_{x\rightarrow a^{+} }f(x)=\infty,则称x=a为垂直渐近线。

(3)斜渐近线:若\displaystyle \lim_{x\rightarrow \infty }\frac{f(x)}{x}=k(k\neq 0)\displaystyle \lim_{x\rightarrow \infty }(f(x)-kx)=b,则称y=kx+b为斜渐近线。

         其中:上式中:x\rightarrow \infty可替换为x\rightarrow +\inftyx\rightarrow -\infty

备注:

①:水平渐近线与x轴平行,垂直渐近线与y轴平行。

②:当水平渐进线与x轴重合时,那么水平渐近线为y=0这条直线,不能说成是x轴。

③:当垂直渐进线与y轴重合时,那么垂直渐近线为x=0这条直线,不能说成是y轴。

2. 曲率:

(1)含义:就是指曲线的弯曲程度。

(2)计算公式:k=\frac{|{y}''|}{(1+({y}')^{2})^{\frac{3}{2}}}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值