matlab和C混合编程实现脉冲压缩

环境:matlab2015b  vs2010  cuda7.5

 

步骤一:创建ComplexMul.h文件

 

#include"cuComplex.h" //因为处理的数据是复数,需要添加这个头文件

#ifndef__COMPLEXMUL_H__

#define__COMPLEXMUL_H__

 

//声明所需要的函数。extern表示该函数在其他文件中执行

externvoid ComplexMul(cuComplex* A,  cuComplex*B, cuComplex* C, int size);//实现矩阵点乘

externvoid Scale(cuComplex* Input,  cuComplex*Output, int size);//实现归一化

 

#endif//__COMPLEXMUL_H__

 

步骤二:在ComplexMul.cu中实现声明的函数

 

#include "ComplexMul.h"

#include "mex.h"

#include "cuComplex.h"

 

__global__ void ComplexMulMask(cuComplex* A,  cuComplex* B, cuComplex* C, int size)

{

    const intnumThreads = blockDim.x * gridDim.x;

    const intthreadID = blockIdx.x * blockDim.x + threadIdx.x;

    for (int i= threadID; i < size; i += numThreads)

    {

        C[i].x= A[i].x * B[i].x - A[i].y * B[i].y;

        C[i].y= A[i].x * B[i].y + A[i].y * B[i].x;   

    }

}

__global__ void ScaleMask(cuComplex* input, floatscale, int size)

{

    const intnumThreads = blockDim.x * gridDim.x;

    const intthreadID = blockIdx.x * blockDim.x + threadIdx.x;

    for (int i= threadID; i < size; i += numThreads)

    {

       input[i].x *=scale;

        input[i].y*=scale;

    }

 

}

void ComplexMul(cuComplex* A,  cuComplex* B, cuComplex* C, int size)

{

    cuComplex*devPtrA=0, *devPtrB=0, *devPtrC=0;

    cudaMalloc(&devPtrA,sizeof(cuComplex)*size);

    cudaMalloc(&devPtrB,sizeof(cuComplex)*size);

    cudaMalloc(&devPtrC,sizeof(cuComplex)*size);

 

    cudaMemcpy(devPtrA,A,sizeof(cuComplex)*size, cudaMemcpyHostToDevice );

    cudaMemcpy(devPtrB,B,sizeof(cuComplex)*size, cudaMemcpyHostToDevice );

 

    ComplexMulMask<<<128,128>>>(devPtrA,devPtrB, devPtrC, size);

 

    cudaMemcpy(C,devPtrC,sizeof(cuComplex)*size,cudaMemcpyDeviceToHost);

 

    cudaFree(devPtrA);

    cudaFree(devPtrB);

    cudaFree(devPtrC);

 

}

 

 

 void Scale(cuComplex*Input,  cuComplex* Output, int size)

{

    cuComplex*devPtrIn=0, *devPtrOut=0;

    cudaMalloc(&devPtrIn,sizeof(cuComplex)*size);

    cudaMalloc(&devPtrOut,sizeof(cuComplex)*size);

 

    cudaMemcpy(devPtrIn,Input,sizeof(cuComplex)*size, cudaMemcpyHostToDevice );

 

    ScaleMask<<<128,128>>>(devPtrIn,1.0f/size, size);

 

    cudaMemcpy(Output,devPtrIn,sizeof(cuComplex)*size,cudaMemcpyDeviceToHost);

 

    cudaFree(devPtrIn);

    cudaFree(devPtrOut);

   

 

}

 

步骤三:使用-c选项编译CUDA代码,生成目标文件。

 

在matlab命令窗口输入:

>>system(‘nvcc–c ComplexMul.cu’)

编译成功后生成ComplexMul.obj文件

 

步骤四:创建mex函数,在matlab里面创建PulseCompression.cpp文件

 

//脉冲压缩

 

#include "mex.h"

#include <cuda_runtime.h>

#include <cufft.h>

#include "ComplexMul.h"

 

#defineNX 16384 //脉压点数,必须是2的整数次幂

#defineBATCH 1

 

 

voidmexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[] )

{

  

    if( nrhs != 4 )

        mexErrMsgTxt("Invaid number ofinput arguments");//检查输入参数个数是否为2

   

    double* signal_i =(double*)mxGetData(prhs[0]); //读取数据

    double* signal_q = (double*)mxGetData(prhs[1]);

    double* filter_i =(double*)mxGetData(prhs[2]);

    double* filter_q =(double*)mxGetData(prhs[3]);

   

    cufftComplex*signal_H=(cufftComplex*)malloc(NX*BATCH*sizeof(cufftComplex));

    cufftComplex* filter_H=(cufftComplex*)malloc(NX*BATCH*sizeof(cufftComplex));

   // printf("输入信号为:\n");

    for(int i=0;i<NX;i++)

    {

        signal_H[i].x=signal_i[i];

        signal_H[i].y=signal_q[i];

      // if(i<10) printf("%.4f+%.4fi\n",signal_i[i],signal_q[i] );

    }

     //printf("输入滤波函数为:\n");

    for(int i=0;i<NX;i++)

    {

        filter_H[i].x=filter_i[i];

        filter_H[i].y=filter_q[i];

      // if(i<10) printf("%.4f+%.4fi\n",filter_i[i],filter_q[i] );

    }

    

    cufftComplex *signal_D; //存储信号

    cudaMalloc( &signal_D,  sizeof(cufftComplex)*NX*BATCH);  // malloc memory

    cudaMemcpy( signal_D, signal_H,sizeof(cufftComplex)*NX*BATCH, cudaMemcpyHostToDevice);   // copy memory from host to device

    cufftComplex *filter_D; //存储滤波器系数

    cudaMalloc( &filter_D,  sizeof(cufftComplex)*NX*BATCH);  // malloc memory

    cudaMemcpy( filter_D, filter_H,sizeof(cufftComplex)*NX*BATCH, cudaMemcpyHostToDevice);   // copy memory from host to device

   

    cufftComplex* signal_deviceOut; //存储信号fft的结果

    cudaMalloc( &signal_deviceOut,sizeof(cufftComplex)*NX*BATCH );

    cufftComplex* filter_deviceOut; //存储滤波器系数  fft的结果

    cudaMalloc( &filter_deviceOut,sizeof(cufftComplex)*NX*BATCH );

   

    //记录时间

    cudaEvent_t start, stop;

         cudaEventCreate(&start);

         cudaEventCreate(&stop);

         cudaEventRecord(start,0);//计时开始

   

    cufftHandle plan_S; //FFT的参数都相同,只需要创建一个plan

    cufftPlan1d(&plan_S, NX*BATCH,CUFFT_C2C, BATCH);

    cufftExecC2C(plan_S, signal_D,signal_deviceOut, CUFFT_FORWARD );

    cufftExecC2C(plan_S, filter_D,filter_deviceOut, CUFFT_FORWARD );

   

    cufftComplex* MatchS_device; //存储点乘的结果

    cudaMalloc( &MatchS_device,sizeof(cufftComplex)*NX*BATCH );

   ComplexMul(signal_deviceOut,filter_deviceOut, MatchS_device,NX*BATCH);//调用函数计算复数点乘

   

    cufftComplex* MatchSifft_device; //存储ifft之后的结果

    cudaMalloc( &MatchSifft_device,sizeof(cufftComplex)*NX*BATCH );

   

    cufftExecC2C(plan_S, MatchS_device,MatchSifft_device, CUFFT_INVERSE );

   

    cufftComplex* MatchS_scale; //存储归一化之后的结果

    cudaMalloc( &MatchS_scale,sizeof(cufftComplex)*NX*BATCH );

    Scale(MatchSifft_device, MatchS_scale,NX);//调用函数对ifft结果进行归一

   

    //记录结束时间

         cudaEventRecord(stop,0);

         cudaEventSynchronize(stop);//计时结束

         float elapsedTime;

         cudaEventElapsedTime(&elapsedTime,start,stop);

   //printf("%3.3fms\t",elapsedTime);//输出计时结果

         cudaEventDestroy(start);

         cudaEventDestroy(stop);

    

    float* signal_out = (float*)mxMalloc(sizeof(cufftComplex)*NX*BATCH );

    cudaMemcpy(signal_out,MatchS_scale,sizeof(cufftComplex)*NX*BATCH, cudaMemcpyDeviceToHost );

 

     plhs[0] = mxCreateNumericMatrix( BATCH,NX, mxSINGLE_CLASS, mxCOMPLEX);

     plhs[1] = mxCreateDoubleMatrix(1,1,mxREAL);   

     double *T;

     T=mxGetPr(plhs[1]);

     *T=elapsedTime;

    

    float* S_real = (float*)mxGetPr(plhs[0]);

    float* S_imag = (float*)mxGetPi(plhs[0]);

    float* S_complex = signal_out;

        for ( int c = 0; c < BATCH; ++c )

        {

            for (int r = 0; r < NX; ++r )

            {

                *S_real++ = *S_complex++;

                *S_imag++ = *S_complex++;

            }

        }

    mxFree(signal_out);

    cufftDestroy(plan_S);

    cudaFree(signal_D);

   

}

 

步骤五:编译mex,在matlab里输入以下命令:

 

>>mex PulseCompression.cpp complexMul.obj -lcudart -lcufft -L"C:\ProgramFiles\NVIDIA GPU Computing Toolkit\CUDA\v7.5\lib\x64" -v-I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\include"

l  -lcudart:告知mex正在使用cuda运行时库。(l是小写的L)

l  -lcufft:表明子啊调用CUFFT库。

l  -Ldir:dir是CUDA和CUFFT库所在的目录。

l  -Idir:dir是CUDA和CUFFT头文件所在的目录。(I是大写的i)

编译成功会生成PulseCompression.mexw64文件。

 

步骤六:在matlab里面调用PulseCompression函数。编写PulseCom.m文件计算设备端脉压并与matlab脉压结果做对比。

 

clc;

clearall;

MON=1000;

fori=1:MON

%随机生成的数据

data_AI=rand(1,FFT_N)*100;

data_AQ=rand(1,FFT_N)*100;

PC_filter_I=rand(1,FFT_N)*100;

PC_filter_Q=rand(1,FFT_N)*100;

 

%设备端脉压

tic

[MatchSo_GPU,Tfft(i)]=PulseCompression(data_AI,data_AQ,PC_filter_I,PC_filter_Q);

TD(i)=toc;

%MATALB做脉压

tic

dataA=data_AI+j*data_AQ;

dataA_fft=fft(dataA,FFT_N);

PC_filter=PC_filter_I+j*PC_filter_Q;

Match_fft=fft(PC_filter,FFT_N);

MatchS=dataA_fft.*Match_fft;

MatchSo=ifft(MatchS);%脉压输出

TH(i)=toc;

end

T_fft=sum(Tfft)/MON  

Tdev=sum(TD)/MON

THos=sum(TH)/MON

 

figure();

plot(abs(MatchSo));

xlabel('距离单元')

ylabel('脉压输出')

title('Matlab端脉冲压缩');grid;

figure();

plot(abs(MatchSo_GPU));

xlabel('距离单元')

ylabel('脉压输出')

title('GPU端脉冲压缩');grid;

 

结果:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值