数学学习(1)深入理解函数:定义、定义域、值域与图像

在数学的广袤领域中,函数作为核心概念,贯穿各个分支,其重要性不言而喻。让我们一同深入探究函数的诸多关键特性。

一、函数的基本定义

函数,本质上是一种规则,它将一个对象转化为另一个对象。输入的对象来自定义域,而输出的对象则属于上域。例如函数f(x)=x2,在未特别声明时,其定义域和上域通常默认为全体实数集R。这里需要明确,f代表变换规则,f(x)是规则应用于x后的结果。同时,像g(x)=x2,若其定义域仅为非负数,尽管规则与f相同,但定义域的差异使它们成为不同函数,g可看作是限制f定义域所得。此外,诸如h(x)=x的腿的个数(定义域为所有动物集合)、j(x)=当 Junkster 吃x时呕吐物的颜色(定义域为 Junkster 要吃的食物集合)等,都是函数的具体实例,它们展示了函数在不同情境下的多样表现。

二、定义域的确定

多数情况下,函数定义域未明确给出,惯例是包含尽可能多的实数。导致定义域受限的常见情形有:分数分母不能为零;不能对负数取平方根(或四次根、六次根等偶数次根);不能取负数或零的对数。例如,对于函数f(x),若存在26−2x​与log(x+8),为使函数有意义,需满足26−2x≥0(即x≤13),同时x+8>0(即x>−8),且分母不为零,最终确定其定义域为(−8,13]∖{2} 。

三、值域的求解与理解

值域是函数实际输出值所构成的集合,它是上域的子集。确定值域的方法多样,以函数F(x)=x2(定义域为[−2,1])为例,可通过图像法求解值域。画出函数图像,从图像左右两侧向y轴水平打光,曲线在y轴上形成的影子的并集即为值域。在此例中,左侧影子覆盖y轴上[0,4]的点,右侧影子覆盖[0,1]的点,最终值域为[0,4] 。

四、函数图像与垂直检验

函数图像是所有坐标为(x,f(x))(x在定义域中)的点的集合。判断一个图像是否为函数图像,可借助垂直检验。若任意垂线与图像相交不多于一次,则该图像是函数图像;反之则不是。以半径为3的圆为例,其方程为x2+y2=9,由于当x∈(−3,3)时,过(x,0)的垂线与圆相交两次,不满足垂直检验,不是函数图像。但上半圆方程y=9−x2​和下半圆方程y=−9−x2​,定义域均为[−3,3],通过垂直检验,是函数图像。

函数的这些特性相互关联,定义域决定了函数的作用范围,值域反映了函数的输出结果,而图像则直观展现了函数的变化趋势,垂直检验保障了函数定义的严谨性。深入理解它们,为进一步探索数学世界的奥秘奠定了坚实基础。

函数复习笔记

        函数

  1. 函数定义:函数是将一个对象转化为另一个对象的规则,输入来自定义域,输出来自上域。如f(x)=x2定义了函数f,将数变为自身平方,在未说明定义域和上域时,默认均为实数集R。同时要明确f是函数,f(x)是应用变换规则于x后的结果。
  2. 函数示例
    • 函数g(x)=x2,定义域为非负数,虽与f(x)=x2规则相同,但定义域不同,g是限制f定义域产生的。
    • 函数h(x)=x的腿的个数,定义域是所有动物的集合,上域是所有非负整数的集合,非定义域内的元素如h(2)、h(椅子)无定义。
    • 函数j(x)=当 Junkster 吃x时呕吐物的颜色,定义域是 Junkster 要吃的食物的集合,上域是所有颜色的集合,函数需给每个有效输入指定唯一输出。
  3. 函数值域:值域是所有可能输出组成的集合,是上域的子集。
    • f(x)=x2,定义域和上域均为R时,值域是非负数集合。
    • g(x)=x2,定义域为非负数,上域为R时,值域也是非负数集合。
    • h(x)是动物腿的个数,其值域是动物可能腿数的集合,具体不清晰,可能包含0、1、2、3⋯等。
    • j(x)是 Junkster 吃x时呕吐物的颜色,值域包含所有可能的呕吐物颜色。

解疑

关于上域与值域

定义

  • 上域:是在函数定义时预先规定的,函数输出值可能所属的集合,它是对函数输出值范围的一种宽泛设定,包含了所有理论上可能出现的输出值。比如在函数f(x)=x2中,如果我们规定其定义域为R,上域为R,这里的上域R就是从一开始就确定的一个范围,表示函数f(x)的输出值理论上可以是任意实数。
  • 值域:是函数实际输出值所构成的集合,是函数在对定义域中的元素进行运算后,真正得到的所有输出值的集合,它是基于函数的实际运算结果确定的。对于函数f(x)=x2,当定义域为R时,因为任何实数的平方都大于等于0,所以其值域是[0,+∞),即所有非负实数构成的值域。

范围关系

  • 值域是上域的子集,即值域中的所有元素都属于上域,但上域中的元素不一定都在值域中。例如函数h(x)=x的腿的个数,定义域是所有动物的集合,上域是所有非负整数的集合,但实际动物腿的个数是有限的一些非负整数,所以其值域是上域这个大集合中的一部分,比如可能是{0,2,4,6,8}等这样的子集。

确定性

  • 上域:通常在定义函数时就明确指定,具有明确性和人为规定性。只要定义函数时确定了上域,它就是固定不变的。
  • 值域:需要根据函数的具体表达式以及定义域来确定,有时候值域的确定可能需要对函数进行分析和计算。例如函数j(x)=当 Junkster 吃x时呕吐物的颜色,其值域要根据 Junkster 实际吃不同食物后呕吐物的颜色来确定,可能会因为 Junkster 的饮食情况等因素有所变化,在没有具体分析前,我们只能大概知道它是所有颜色集合中的一个子集,但具体包含哪些颜色并不十分确定。

一言概括:上域是主观人为定义的区间,而值域是客观计算出的结果区间。

区间表示法

  1. 背景:学习的书中函数的上域常为实数集,定义域也尽可能与实数集相近,因此会常涉及实轴子集。
  2. 区间表示法
    • 闭区间:用[a,b]表示,指a到b端点间的所有实数,满足a≤x≤b,例如[2,5],包含2、5及它们之间的分数、无理数等。
    • 开区间:用(a,b)表示,指介于a和b之间但不包括a和b的所有实数,即a<x<b,如(2,5)。
    • 半开区间:[a,b)表示介于a和b之间、包括a但不包括b的所有实数;(a,b]则包括b但不包括a ,如{x:2≤x<5}可写成[2,5)。
    • 涉及无穷的区间:(a,∞)指大于a但不包括a的所有数;[a,∞)包括a及大于a的所有数,还有另外 3 种涉及∞的可能性(未具体展开)。

求定义域

  1. 定义域的常规情况:函数定义有时包含定义域,但多数情况下未给出,按惯例,定义域是尽可能多的实数集合,如因负数不能开平方,其定义域是[0,∞)。
  2. 导致定义域受限的常见情况
    • 分数分母不能为零。
    • 不能取负数的平方根(或四次根、六次根等)。
    • 不能取负数或零的对数。
    • 像tan(90∘)无定义,本质是因隐藏分母为零,属于第一种情况。
  3. 求定义域的示例:对于函数f(x),为使f(x)有意义:
    • 因要取(26−2x)的平方根,所以26−2x≥0,即x≤13。
    • 因要取(x+8)的对数,所以x+8>0,即x>−8,综合可得定义域最多是(−8,13]。
    • 因分母不能为0,所以x=2且x=−19,结合前面x的范围,排除x=−19,但要去掉x=2,最终得出定义域是除2以外的集合(−8,13],写作(−8,13]∖{2} ,“∖” 表示 “不包括”。

利用图像求值域

  1. 函数F的定义及与f的区别:定义函数F,其定义域为[−2,1],F(x)=x2在此定义域上。与对于所有实数x,f(x)=x2的函数f相比,二者函数规则相同,但定义域不同,F是由限制f的定义域得到的。
  2. 利用图像求值域的方法:画出函数图像,从图像左右两边很远的地方朝向y轴水平地射入两束亮光,曲线在y轴上会形成左右两个影子,函数的值域就是这两个影子的并集,即y轴上落在左侧或右侧影子里的点所构成的集合。
  3. 求函数F的值域:以函数F为例,画出其图像,其左侧影子覆盖y轴上[0,4]的所有点,右侧影子覆盖[0,1]的所有点,右侧影子无额外贡献,所以函数F的值域是[0,4] 。

垂直检验

  1. 函数图像的概念:函数f的图像是所有坐标为(x,f(x))的点的集合,x在f的定义域中。即对于定义域中的x,在x轴上的点x正上方高度为f(x)处画点,不在定义域中的x不画点。
  2. 垂线检验的内容:判断一个图像是否为函数的图像,可看是否有任何垂线和图像相交多于一次。若有,则不是函数图像;若没有一条垂线和图像相交多于一次,则是函数图像。
  3. 以圆为例的分析:以原点为中心、半径为3的圆不是函数图像,因为当x落在区间(−3,3)上时,过(x,0)的垂线与圆相交两次,无法确定f(x)的值。圆的方程为x2+y2=9,其上半圆方程是y=9−x2​,下半圆方程是y=−9−x2​,这两个是定义域为[−3,3]的函数。也可对圆进行不同方式分割,只要不违反垂线检验即可,如给出的一个定义域为[−3,3]的函数图像,因其通过垂线检验,所以是函数图像。

解疑

如有相交的点数量大于1,则考虑用不用的定义域来分开不同的点。写代码的时候也要注意类似的情况,尽量简化函数内的输入和输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值