逻辑回归梯度下降公式详细推导

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/wgdzz/article/details/48816307

标签(空格分隔): 机器学习


  在一次面试中被问道了逻辑回归公式的推导,虽然知道原理,但是从来未从头到尾推导过,面试时估计有点困,又不完全熟悉,又略有紧张(借口找的齐全了…)。面试官还算仁慈,没有太严格。但是自己还是应该会熟练掌握才对的…写此博客,以备复习。

  假设hθ(x)=11+exp(θTx),且(x(i),y(i))为样本对,共有m个样本。则极大似然函数有:

l(θ)=log(i=1mhθ(xi)y(i)(1hθ(x(i))1y(i))=i=1m[y(i)log(hθ(xi))+(1y(i))(1hθ(x(i))]

l(θ)θ=i=1m[y(i)hθ(xi)hθ(xi)θ+1y(i)1hθ(xi)hθ(xi)θ(1)]=i=1m[hθ(xi)θ(y(i)hθ(xi)1y(i)1hθ(xi))]=i=1m[hθ(xi)θ(y(i)(1hθ(xi))+(y(i)1)hθ(xi)hθ(xi)(1hθ(xi)))]=i=1m[hθ(xi)θ(y(i)hθ(xi)hθ(xi)(1hθ(xi)))]

其中,

hθ(xi)θ=hθ(xi)(1hθ(xi))x(j)

化简得:

θl(θ)=l(θ)θ=i=1my(i)hθ(xi))x(j)

展开阅读全文

没有更多推荐了,返回首页