如何用OpenAI ChatGPT API实现Embedding

Embedding是什么?网上内容很多,不过多解释,问了下chatgpt,它的解释如下:

在自然语言处理和机器学习领域,"embeddings" 是指将单词、短语或文本转换成连续向量空间的过程。这个向量空间通常被称为嵌入空间(embedding space),而生成的向量则称为嵌入向量(embedding vector)或向量嵌入(vector embedding)。

嵌入向量可以捕获单词、短语或文本的语义信息,使得它们可以在数学上进行比较和计算。这种比较和计算在自然语言处理和机器学习中经常被用于各种任务,例如文本分类、语义搜索、词语相似性计算等。

在中文语境下,"embeddings" 通常被翻译为 "词向量" 或者 "向量表示"。这些翻译强调了嵌入向量的特点,即将词汇转换成向量,并表示为嵌入空间中的点。

OpenAI 中的文本 Embedding 衡量文本字符串之间的相关性。Embedding 通常用于以下场景:

  1. 搜索(结果按查询字符串的相关性进行排序)
  2. 聚类(将文本字符串按相似性分组)
  3. 推荐(推荐具有相关文本字符串的项目)
  4. 异常检测(识别相关性较小的异常值)
  5. 多样性测量(分析相似度分布)
  6. 分类(文本字符串按其最相似的标签进行分类)

直接上代码:

1、首先需要拿到openai的key和url,这个github的项目比较火,有接口,方便多了

### 解决 OpenAI Embedding API 的 RateLimitError 当使用 OpenAI Embedding API 时遇到 `RateLimitError`,可以通过以下方法来有效处理这一问题: #### 减少令牌数量 通过减少传递给模型的令牌数可以降低请求频率并优化性能。一种常见的策略是预处理输入数据以缩短文本长度[^1]。例如,在嵌入之前对文档进行分词、去除停用词或仅保留关键部分。 #### 实现指数退避重试机制 为了优雅地应对速率限制错误,可以在代码中实现一个自动化的重试逻辑,采用指数退避算法(Exponential Backoff)。这种方法会在每次失败后等待更长时间再重新尝试调用API。下面是一个 Python 示例展示如何实现该功能: ```python import time from openai import OpenAI, RateLimitError def call_embedding_with_retry(text, max_retries=5): client = OpenAI() retry_count = 0 while retry_count < max_retries: try: response = client.embeddings.create( model="text-embedding-ada-002", input=text, ) return response.data[0].embedding except RateLimitError as e: wait_time = (2 ** retry_count) + 0.5 * abs(hash(str(e))) % 1.0 print(f"Hit rate limit error. Retrying after {wait_time:.2f} seconds...") time.sleep(wait_time) retry_count += 1 raise Exception("Max retries reached.") # Example usage example_text = "This is an example text." embedding_result = call_embedding_with_retry(example_text) print(embedding_result[:10]) # Print first ten elements of embedding vector. ``` 上述脚本定义了一个函数 `call_embedding_with_retry()` ,它接受一段文字作为参数,并反复尝试获取其向量表示直到成功或者达到最大重试次数为止。 #### 使用批量处理技术 如果应用程序需要一次性计算大量短句或单词的嵌入,则考虑将这些项目组合成较大的批次一起提交到Embedding服务端口上运行会更加高效。这不仅减少了单独HTTP请求的数量从而避免触发限流保护措施,而且还能充分利用GPU资源加速整个流程执行速度。 另外值得注意的是知识图谱嵌入研究领域已经发展出了许多先进的技术和理论框架用于捕捉实体属性、时间信息以及图形结构等方面特征[^2]。虽然这部分内容主要针对学术界内部探讨具体应用场景下的建模方式及其优势所在,但对于实际工程实践也有一定借鉴意义——即合理设计数据表征形式能够显著提升下游任务表现效果的同时也可能间接缓解因频繁交互造成的压力问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值