概述
在调试Spark Streaming应用程序的时候,我们可以使用如下方法创建基于RDD队列的DStream:
streamingContext.queueStream(queueOfRDD)
本文demo场景是:每隔1秒创建一个RDD,Streaming每隔2秒就对数据进行处理。
代码
新建一个LzTestRDDQueueStream.scala代码文件,如下所示:
package sparkStreaming
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.{Seconds, StreamingContext}
import scala.collection.mutable
/**
* @Author: Garrett Wang
* @Description: 每隔1秒创建一个RDD,Streaming每隔2秒就对数据进行处理
* @Date:Create:in 2019/12/26 10:42
* @Modified By:
* @Parameters
*/
object LzTestRDDQueueStream {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().setAppName("TestRDDQueue").setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, Seconds(2))
// 创建一个队列并且让spark streaming监听这个队列
val rddQueue = new mutable.Queue[RDD[Int]]()
val queueStream = ssc.queueStream(rddQueue)
// 队列流处理逻辑
val mappedStream = queueStream.map(r => (r % 10, 1)).reduceByKey(_ + _)
mappedStream.print()
ssc.start()
// 每隔1秒往RDD队列里面添加整数数组
for (i <- 1 to 10) {
rddQueue += ssc.sparkContext.makeRDD(1 to 100, 2)
Thread.sleep(1000)
}
ssc.stop()
}
}
sbt打包运行命令如下:
spark2-submit --class sparkStreaming.LzTestRDDQueueStream /opt/IdeaProjects/LzScalaSparkTest/target/scala-2.11/lzscalasparktest_2.11-0.3.jar
运行结果如下:
-------------------------------------------
Time: 1577330452000 ms
-------------------------------------------
(4,10)
(0,10)
(6,10)
(8,10)
(2,10)
(1,10)
(3,10)
(7,10)
(9,10)
(5,10)