Twitter-Snowflake算法自动生成ID——待整理

原创 2018年04月15日 23:21:58

    背景:解决分布式自增ID发生碰撞问题。挺简单的。采用64位的Long类型数据,而不是uuid类型的。

    优点:可以根据自己的业务需要进行修改。

参考博客:

http://yuanhsh.iteye.com/blog/2209696

https://www.cnblogs.com/relucent/p/4955340.html


以下纯属代码了,不喜者勿进

public class SnowflakeIdWorker {

    /**
     * Twitter_Snowflake<br>
     * SnowFlake的结构如下(每部分用-分开):<br>
     * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
     * 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
     * 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
     * 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
     * 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
     * 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
     * 加起来刚好64位,为一个Long型。<br>
     * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
     */


        // ==============================Fields===========================================
        /** 开始时间截 (2015-01-01) */
        private final long twepoch = 1420041600000L;

        /** 机器id所占的位数 */
        private final long workerIdBits = 5L;

        /** 数据标识id所占的位数 */
        private final long datacenterIdBits = 5L;

        /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
        private final long maxWorkerId = -1L ^ (-1L << workerIdBits);

        /** 支持的最大数据标识id,结果是31 */
        private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

        /** 序列在id中占的位数 */
        private final long sequenceBits = 12L;

        /** 机器ID向左移12位 */
        private final long workerIdShift = sequenceBits;

        /** 数据标识id向左移17位(12+5) */
        private final long datacenterIdShift = sequenceBits + workerIdBits;

        /** 时间截向左移22位(5+5+12) */
        private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

        /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
        private final long sequenceMask = -1L ^ (-1L << sequenceBits);

        /** 工作机器ID(0~31) */
        private long workerId;

        /** 数据中心ID(0~31) */
        private long datacenterId;

        /** 毫秒内序列(0~4095) */
        private long sequence = 0L;

        /** 上次生成ID的时间截 */
        private long lastTimestamp = -1L;

        //==============================Constructors=====================================
        /**
         * 构造函数
         * @param workerId 工作ID (0~31)
         * @param datacenterId 数据中心ID (0~31)
         */
        public SnowflakeIdWorker(long workerId, long datacenterId) {
            if (workerId > maxWorkerId || workerId < 0) {
                throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
            }
            if (datacenterId > maxDatacenterId || datacenterId < 0) {
                throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
            }
            this.workerId = workerId;
            this.datacenterId = datacenterId;
        }

        // ==============================Methods==========================================
        /**
         * 获得下一个ID (该方法是线程安全的)
         * @return SnowflakeId
         */
        public synchronized long nextId() {
            long timestamp = timeGen();

            //如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
            if (timestamp < lastTimestamp) {
                throw new RuntimeException(
                        String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
            }

            //如果是同一时间生成的,则进行毫秒内序列
            if (lastTimestamp == timestamp) {
                sequence = (sequence + 1) & sequenceMask;
                //毫秒内序列溢出
                if (sequence == 0) {
                    //阻塞到下一个毫秒,获得新的时间戳
                    timestamp = tilNextMillis(lastTimestamp);
                }
            }
            //时间戳改变,毫秒内序列重置
            else {
                sequence = 0L;
            }

            //上次生成ID的时间截
            lastTimestamp = timestamp;

//            在往后,你可以根据自己的业务进行处理比如订单号
            //移位并通过或运算拼到一起组成64位的ID
            return ((timestamp - twepoch) << timestampLeftShift)
                    | (datacenterId << datacenterIdShift) 
                    | (workerId << workerIdShift)
                    | sequence;
        }

        /**
         * 阻塞到下一个毫秒,直到获得新的时间戳
         * @param lastTimestamp 上次生成ID的时间截
         * @return 当前时间戳
         */
        protected long tilNextMillis(long lastTimestamp) {
            long timestamp = timeGen();
            while (timestamp <= lastTimestamp) {
                timestamp = timeGen();
            }
            return timestamp;
        }

        /**
         * 返回以毫秒为单位的当前时间
         * @return 当前时间(毫秒)
         */
        protected long timeGen() {
            return System.currentTimeMillis();
        }

        //==============================Test=============================================
        /** 测试 */
        public static void main(String[] args) {
            SnowflakeIdWorker idWorker = new SnowflakeIdWorker(0, 0);
            long id = idWorker.nextId();
            System.out.println(Long.toBinaryString(id));
//            for (int i = 0; i < 1000; i++) {
//                long id = idWorker.nextId();
//                System.out.println(Long.toBinaryString(id));
//                System.out.println(id);
//            }
        }




版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wgp15732622312/article/details/79954723

Twitter-Snowflake(64位分布式ID算法)分析与JAVA实现

Snowflake简介  Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户...
  • JustHaveTry
  • JustHaveTry
  • 2017-11-28 10:41:57
  • 252

Twitter的分布式自增ID算法Snowflake的PHP实现,Snowflake PHP版本,高并发唯一id,全局唯一id,不重复id

  • 2016年10月28日 11:38
  • 3KB
  • 下载

Twitter的分布式自增ID算法snowflake

原文地址:http://www.cnblogs.com/relucent/p/4955340.html 概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防...
  • burpee
  • burpee
  • 2016-11-09 16:31:38
  • 495

Twitter分布式自增ID算法Snowflake

在分布式系统中,需要生成全局UID的场合还是比较多的,twitter的snowflake解决了这种需求,实现也还是很简单的,除去配置信息,核心代码就是毫秒级时间41位 机器ID 10位 毫秒内序列12...
  • wenxuechaozhe
  • wenxuechaozhe
  • 2016-06-25 16:44:32
  • 2331

Twitter-Snowflake,64位自增ID算法详解

Twitter-Snowflake算法产生的背景相当简单,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统...
  • wallwind
  • wallwind
  • 2015-11-05 00:21:34
  • 3230

PHP使用SnowFlake算法生成唯一ID

namespace App\Services; abstract class Particle { const EPOCH = 1479533469598; const max12bi...
  • Webben
  • Webben
  • 2017-03-15 18:10:59
  • 1275

Twitter Snowflake算法详解

一、简介Twitter Snowflake算法是用来在分布式场景下生成唯一ID的。举个栗子:我们有10台分布式MySql服务器,我们的系统每秒能生成10W条数据插入到这10台机器里,现在我们需要为每一...
  • u012216366
  • u012216366
  • 2016-10-09 19:48:56
  • 1725

【Zanuck 镇】编写php高性能snowflake算法插件(分布式64位唯一性自增id生成算法)

snowflake算法是个啥?首先我来提出个问题,怎么在分布式系统中生成唯一性id并保持该id大致自增?在twitter中这是最重要的业务场景,于是twitter推出了一种snowflake算法。参考...
  • ztyzly00
  • ztyzly00
  • 2016-09-01 11:21:58
  • 2920

twitter id生成算法snowflake详解

概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。为了满足T...
  • antony9118
  • antony9118
  • 2016-10-09 14:54:03
  • 4467

自动id生成器类

import java.util.concurrent.atomic.AtomicInteger; AtomicInteger idCreate = new AtomicInteger();...
  • anguea
  • anguea
  • 2017-03-27 09:54:53
  • 185
收藏助手
不良信息举报
您举报文章:Twitter-Snowflake算法自动生成ID——待整理
举报原因:
原因补充:

(最多只允许输入30个字)