hdu 5168 Legal path
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5168
题意:
一个有向图,给定起点终点,每条边上有权值。
一条合法的路径定义为相邻边的权值之差不小于K的路径,即路径上每条边的权值至少要比上一条边的权值大K,如果上一条边存在。合法路径的长度定义为路径上的边权值总和。
求从起点到终点的合法路径的最短长度。
限制:
有多组数据,第一行为数据组数T(T≤10)。
对于每组数据,第一行为三个整数n,m,K,n,m分别表示这组数据的有向图的点数,边数,起点为1号点,终点为n号点。
在接下来有m行,每行有三个整数x,y,z,表示从x到y有一条权值为z的边。
2 <= n <= 100,000
0 <= m <= 200,000
1 <= K,z <= 1,000,000,000
1 <= x,y <= n
思路:
先把所有边按权值从小到大排序,因为权值大的边是不可能连到权值小的边上。
然后按边更新dp数组
dp[i]是一个vector,里面保存着:(原点到点i的最后一条边的权值c , 原点到点i的距离s)
ps:这个信息应该要存在一个关系,如vector里面的信息为:
(c1,s1),(c2,s2),...,(ci,si),...,(cj,sj)
对于任意i<j,应该有ci<cj && si>sj,这是个关键点。
每到一条边我们都可以知道这条边的出发点fr,到达点to,和边权c。
然后按照边权c-k在dp[fr]中二分查找合适的信息,然后用来更新dp[to]。
跑完m条边就能得到答案,复杂度为O(mlog(m))。
附上一组测试数据:
1
5 6 3
1 2 3
2 3 6
3 4 10
4 5 13
2 3 1
2 4 11
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5168
题意:
一个有向图,给定起点终点,每条边上有权值。
一条合法的路径定义为相邻边的权值之差不小于K的路径,即路径上每条边的权值至少要比上一条边的权值大K,如果上一条边存在。合法路径的长度定义为路径上的边权值总和。
求从起点到终点的合法路径的最短长度。
限制:
有多组数据,第一行为数据组数T(T≤10)。
对于每组数据,第一行为三个整数n,m,K,n,m分别表示这组数据的有向图的点数,边数,起点为1号点,终点为n号点。
在接下来有m行,每行有三个整数x,y,z,表示从x到y有一条权值为z的边。
2 <= n <= 100,000
0 <= m <= 200,000
1 <= K,z <= 1,000,000,000
1 <= x,y <= n
思路:
先把所有边按权值从小到大排序,因为权值大的边是不可能连到权值小的边上。
然后按边更新dp数组
dp[i]是一个vector,里面保存着:(原点到点i的最后一条边的权值c , 原点到点i的距离s)
ps:这个信息应该要存在一个关系,如vector里面的信息为:
(c1,s1),(c2,s2),...,(ci,si),...,(cj,sj)
对于任意i<j,应该有ci<cj && si>sj,这是个关键点。
每到一条边我们都可以知道这条边的出发点fr,到达点to,和边权c。
然后按照边权c-k在dp[fr]中二分查找合适的信息,然后用来更新dp[to]。
跑完m条边就能得到答案,复杂度为O(mlog(m))。
附上一组测试数据:
1
5 6 3
1 2 3
2 3 6
3 4 10
4 5 13
2 3 1
2 4 11
/*hdu 5168 Legal path
题意:
一个有向图,给定起点终点,每条边上有权值。
一条合法的路径定义为相邻边的权值之差不小于K的路径,即路径上每条边的权值至少要比上一条边的权值大K,如果上一条边存在。合法路径的长度定义为路径上的边权值总和。
求从起点到终点的合法路径的最短长度。
限制:
有多组数据,第一行为数据组数T(T≤10)。
对于每组数据,第一行为三个整数n,m,K,n,m分别表示这组数据的有向图的点数,边数,起点为1号点,终点为n号点。
在接下来有m行,每行有三个整数x,y,z,表示从x到y有一条权值为z的边。
2 <= n <= 100,000
0 <= m <= 200,000
1 <= K,z <= 1,000,000,000
1 <= x,y <= n
思路:
先把所有边按权值从小到大排序,因为权值大的边是不可能连到权值小的边上。
然后按边更新dp数组
dp[i]是一个vector,里面保存着:(原点到点i的最后一条边的权值c , 原点到点i的距离s)
ps:这个信息应该要存在一个关系,如vector里面的信息为:
(c1,s1),(c2,s2),...,(ci,si),...,(cj,sj)
对于任意i
sj,这是个关键点。
每到一条边我们都可以知道这条边的出发点fr,到达点to,和边权c。
然后按照边权c-k在dp[fr]中二分查找合适的信息,然后用来更新dp[to]。
跑完m条边就能得到答案,复杂度为O(mlog(m))。
*/
#include
#include
#include
#include
#include
using namespace std; #define LL __int64 #define MP make_pair #define PB push_back const int N=100005; const LL INF=(LL)0x3f3f3f3f*0x3f3f3f3f; struct Edge{ int fr,to; LL c; Edge(){}; Edge(int _fr,int _to,LL _c){ fr=_fr; to=_to; c=_c; } }E[2*N]; bool cmp1(Edge a,Edge b){ return a.c
b.s; return a.c
dp[N]; int n,m,k; void init(){ for(int i=1;i<=n;++i) dp[i].clear(); } int main(){ int T; scanf("%d",&T); while(T--){ scanf("%d%d%d",&n,&m,&k); init(); for(int i=0;i
E[i].c) dp[to].PB(Dt(E[i].c,E[i].c)); } else{ if(dp[fr].size()==0) continue; int p=upper_bound(dp[fr].begin(),dp[fr].end(),Dt(E[i].c-k,-INF),cmp2)-dp[fr].begin(); if(p==0) continue; else if(p>0 && p
dp[fr][p].s+E[i].c) dp[to].PB(Dt(E[i].c,dp[fr][p].s+E[i].c)); } } if(dp[n].size()==0) puts("-1"); else printf("%I64d\n",dp[n][dp[n].size()-1].s); } return 0; }