基于flink实现的worldcount

Flink框架主要应用针对流式数据进行有状态计算。
Flink使用java语言开发,提供了scala编程的接口。使用java或者scala开发Flink是需要使用jdk8版本,如果使用Maven,maven版本需要使用3.0.4及以上,Flink同时也支持使用python进行开发,需要在python中安装PyFlink 包

本实例基于flink1.7.1。
创建maven工程,pom配置文件如下:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <groupId>com.wh.flink</groupId>
  <artifactId>flink</artifactId>
  <version>1.0-SNAPSHOT</version>

  <name>flink</name>
  <!-- FIXME change it to the project's website -->
  <url>http://www.example.com</url>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.8</maven.compiler.source>
    <maven.compiler.target>1.8</maven.compiler.target>
    <flink.version>1.7.1</flink.version>
  </properties>

  <dependencies>
    <!-- Flink 依赖 -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-java</artifactId>
      <version>${flink.version}</version>
      <!--<scope>provided</scope>-->
    </dependency>
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-streaming-java_2.11</artifactId>
      <version>${flink.version}</version>
      <!--<scope>provided</scope>-->
    </dependency>


    <!-- Flink Kafka连接器的依赖 -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-kafka-0.11_2.11</artifactId>
      <version>${flink.version}</version>
    </dependency>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>4.11</version>
      <scope>test</scope>
    </dependency>

    <!-- Flink 开发Scala需要导入以下依赖 -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-scala_2.11</artifactId>
      <version>${flink.version}</version>
      <!--<scope>provided</scope>-->
    </dependency>
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-streaming-scala_2.11</artifactId>
      <version>${flink.version}</version>
      <!--<scope>provided</scope>-->
    </dependency>

    <!--<dependency>-->
    <!--<groupId>org.scala-lang</groupId>-->
    <!--<artifactId>scala-library</artifactId>-->
    <!--<version>2.11.12</version>-->
    <!--</dependency>-->

    <!-- log4j 和slf4j 包,如果在控制台不想看到日志,可以将下面的包注释掉-->
    <!--<dependency>-->
    <!--<groupId>org.slf4j</groupId>-->
    <!--<artifactId>slf4j-log4j12</artifactId>-->
    <!--<version>1.7.25</version>-->
    <!--<scope>test</scope>-->
    <!--</dependency>-->
    <!--<dependency>-->
    <!--<groupId>log4j</groupId>-->
    <!--<artifactId>log4j</artifactId>-->
    <!--<version>1.2.17</version>-->
    <!--</dependency>-->
    <!--<dependency>-->
    <!--<groupId>org.slf4j</groupId>-->
    <!--<artifactId>slf4j-api</artifactId>-->
    <!--<version>1.7.25</version>-->
    <!--</dependency>-->
    <!--<dependency>-->
    <!--<groupId>org.slf4j</groupId>-->
    <!--<artifactId>slf4j-nop</artifactId>-->
    <!--<version>1.7.25</version>-->
    <!--<scope>test</scope>-->
    <!--</dependency>-->
    <!--<dependency>-->
    <!--<groupId>org.slf4j</groupId>-->
    <!--<artifactId>slf4j-simple</artifactId>-->
    <!--<version>1.7.5</version>-->
    <!--</dependency>-->




  </dependencies>

  <build>
    <plugins>
      <!-- 在maven项目中既有java又有scala代码时配置 maven-scala-plugin 插件打包时可以将两类代码一起打包 -->
      <plugin>
        <groupId>org.scala-tools</groupId>
        <artifactId>maven-scala-plugin</artifactId>
        <version>2.15.2</version>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
              <goal>testCompile</goal>
            </goals>
          </execution>
        </executions>
      </plugin>

      <plugin>
        <artifactId>maven-assembly-plugin</artifactId>
        <version>2.4</version>
        <configuration>
          <!-- 设置false后是去掉 MySpark-1.0-SNAPSHOT-jar-with-dependencies.jar 后的 “-jar-with-dependencies” -->
          <!--<appendAssemblyId>false</appendAssemblyId>-->
          <descriptorRefs>
            <descriptorRef>jar-with-dependencies</descriptorRef>
          </descriptorRefs>
          <archive>
            <manifest>
              <mainClass>com.lw.java.myflink.Streaming.example.FlinkReadSocketData</mainClass>
            </manifest>
          </archive>
        </configuration>
        <executions>
          <execution>
            <id>make-assembly</id>
            <phase>package</phase>
            <goals>
              <goal>assembly</goal>
            </goals>
          </execution>
        </executions>
      </plugin>
    </plugins>
  </build>
</project>

创建需要统计数据的words文件

hello java
hello hadoop
hello scala
hello storm
hello spark
hello flink
hello java
hello hadoop
hello scala
hello storm
hello spark
hello flink
 

创建FlinkWorldCount 类,代码如下

public class FlinkWorldCount {
    public static void main(String[] args) throws Exception {
        //创建环境
        StreamExecutionEnvironment env1=StreamExecutionEnvironment.getExecutionEnvironment();
        LocalStreamEnvironment env2=StreamExecutionEnvironment.createLocalEnvironment();
        ExecutionEnvironment env=ExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        //读取文件
        DataSource<String>dataSource=env.readTextFile("./data/words");
        FlatMapOperator<String,String>words=dataSource.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String line, Collector<String> out) throws Exception {
        String []split=line.split(" ");
                for (String word : split) {
                    out.collect(word);
                }
            }
        });
        MapOperator<String,Tuple2<String,Integer>>map=words.map(new MapFunction<String, Tuple2<String,Integer>>() {
            @Override
            public Tuple2 <String,Integer>map(String word) throws Exception {
                return new Tuple2<>(word,1);
            }
        });
        UnsortedGrouping<Tuple2<String,Integer>>grouping=map.groupBy(0);
        DataSet<Tuple2<String,Integer>>sum=grouping.sum(1);
        SortPartitionOperator<Tuple2<String,Integer>>result=sum.sortPartition(1, Order.DESCENDING);
        //打印运行结果
       sum.print();
        // 将运行结果写入到文件中
       //  DataSink<Tuple2<String,Integer>>tuple2DataSink=result.writeAsCsv("./data/reuslt",";","=",  		               FileSystem.WriteMode.OVERWRITE);
     //   env.execute();
    }
}

执行结果如下
在这里插入图片描述
将执行结果写入到文件中,
最后代码调整如下:

  //sum.print();   【print、count、collect自带触发功能,不需要env.execute()】
        // 将运行结果写入到文件中
        DataSink<Tuple2<String,Integer>>tuple2DataSink=result.writeAsCsv("./data/reuslt",";","=", FileSystem.WriteMode.OVERWRITE);
         env.execute();

执行结果
看到在data目录下创建了result文件,并将结果写入到了result文件中。
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

菜菜的中年程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值