FOCUS : Shedding Light on the High Search Response Time in the Wild (学习记录)

问题:解决在运维中,发现高搜索响应时间之后,使用机器学习算法发现异常

AIops 看的第一篇论文学习记录。

 

 

 

对web应用中 high search response time 请求时间长 影响因素的分析

然后使用决策树算法得出影响结果以及分析 影响 的 type

通过分析 影响因子KPI (Key performance indicator)的 权重,然后针对性的进行优化

 

1. 第一部分提出三个问题:

① logs中的数据,有哪些属性对HSRT有更高的影响权重‘

② 哪些 condition types 是更prevalent即更hot

③ attributes 对 condition types 的影响

过程:

a decision tree based classifier to identify HSRT conditions in search logs of each day; a clustering based condition type miner to combine similar HSRT conditions into one type, and find the prevalent condition types across days; and an attribute effect estimator to analyze the effect of each individual attribute on SRT within a prevalent condition type.

从第一个与的分析中,对 image 的传输优化对提升 SRT 有助,然后采用base64编码,SRT提升了

 

 

2.第二部分:

① logs 的规定

对百度的 1% 的采样,log组成 :1)SRT and SRT components; 2) several attributes 认为有影响的

1)SRT and SRT components

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值