问题:解决在运维中,发现高搜索响应时间之后,使用机器学习算法发现异常
AIops 看的第一篇论文学习记录。
对web应用中 high search response time 请求时间长 影响因素的分析
然后使用决策树算法得出影响结果以及分析 影响 的 type
通过分析 影响因子KPI (Key performance indicator)的 权重,然后针对性的进行优化
1. 第一部分提出三个问题:
① logs中的数据,有哪些属性对HSRT有更高的影响权重‘
② 哪些 condition types 是更prevalent即更hot
③ attributes 对 condition types 的影响
过程:
a decision tree based classifier to identify HSRT conditions in search logs of each day; a clustering based condition type miner to combine similar HSRT conditions into one type, and find the prevalent condition types across days; and an attribute effect estimator to analyze the effect of each individual attribute on SRT within a prevalent condition type.
从第一个与的分析中,对 image 的传输优化对提升 SRT 有助,然后采用base64编码,SRT提升了
2.第二部分:
① logs 的规定
对百度的 1% 的采样,log组成 :1)SRT and SRT components; 2) several attributes 认为有影响的
1)SRT and SRT components