lap.lapjv使用方法

这篇博客介绍了如何利用lap.lapjv实现线性指派问题的Jonker-Volgenant算法,该算法效率高于匈牙利算法。示例中展示了一个4x3非方阵的指派矩阵,通过设置extend_cost=True适应非方阵,并设定cost_limit来控制指派阈值。输出包括最优指派成本、行分配数组x和列分配数组y。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

lap.lapjv实现线性指派问题

官方文档使用lapjv实现指派问题的算法是Jonker-Volgenant algorithm.这个算法比匈牙利算法快得多

示例

Matrix = np.matrix([[4, 5, 9],
                   [6, 2, 4],
                   [8, 3, 6],
                   [1, 2, 3]])  #一个4*3的非方阵
 
 #Matrix: 指派矩阵, extend_cost: False, 指派矩阵是否为方阵, cost_limit: float, 指派阈值
cost, x, y = lap.lapjv(Matrix, extend_cost=True, cost_limit=9))
cost: 8
x: array([-1,  2,  1,  0]) 
y: array([3, 2, 1]))

这里的输出cost是最优指派的代价,x为一个长度为 N行数的数组,指定每行分配给哪一列,y为长度为列数的数组,指定每列分配给哪一行。
注意到,我们输入的矩阵不是一个方阵,因此extend_cost为True,如果输入是一个非方阵,而extend_cost为False时会报错,cost_limit是当指派的值大于这个阈值时才会分配,否则放弃这个分配结果(-1)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值