【DFS/递归】问题 D: 【递归入门】n皇后 问题(原始的8皇后问题)

文章介绍了八皇后问题,即如何在8x8的棋盘上放置8个皇后,使得它们互不攻击。提出了利用深度优先搜索(DFS)策略来生成所有可能的皇后排列,并通过回溯法排除不符合条件(在同一行、列或对角线上的皇后)的解。给出的C++代码示例展示了如何使用DFS和回溯法解决此问题。
摘要由CSDN通过智能技术生成
题目描述

会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。

输入

一个整数n( 1 < = n < = 10 )

输出

每行输出对应一种方案,按字典序输出所有方案。每种方案顺序输出皇后所在的列号,相邻两数之间用空格隔开。如果一组可行方案都没有,输出“no solute!”

样例输入 复制
4
样例输出 复制
2 4 1 3
3 1 4 2
分析:

完成n皇后问题可以先求出n数字的不同排列组合,每次排完进行判定,若出现斜着的就不输出该排列。而实现n数字的不同排列组合可以利用DFS思想,把排完n个数字作为”死胡同“,将每次要排排列的一个位序作为”岔路口“。

要点:

每次到岔路口时,需要回顾之前没选择的数字,查看每个数字是否被选择,因此设置一个hash表存放每个数字的使用情况。

#include <iostream>
#include <cmath>
#include <cstring>

using namespace std;

int n, cnt;

void DFS(bool N[],int P[], int index){
    if(index == n){
        bool flag = true;
        for(int i = 0; i < n - 1; i++){
            for(int j = i + 1; j < n; j++){
                if(abs(j - i) == abs(P[i] - P[j])){
                    flag = false;
                    break;
                }
            }
        }
        if(flag){
            cnt++;
            for(int i = 0; i < n; i++){
                cout << P[i];
                if(i != n - 1){
                    cout << ' ';
                }else{
                    cout << '\n';
                }
            }
        }
    }

    for(int i = 1; i <= n; i++){
        if(!N[i]){
            N[i] = true;
            P[index] = i;
            DFS(N, P, index + 1);
            N[i] = false;
        }
    }
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);

    while(cin >> n){
        bool N[11];
        int P[10];
        memset(N, 0, sizeof(N));
        cnt = 0;
        DFS(N, P, 0);
        if(!cnt){
            cout << "no solute!\n";
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值