1.在题中遇到根号:必须消去根号,使用平方差公式。
2.在题中遇到平方:为避免讨论,需要取一个去心邻域,方法为根据x到极限点的距离小于某值来列绝对值式,一般可以将原式利用平方差公式或者合并同类项得到两个含x的式子,其中一个利用原先绝对值式计算出的x的最大范围进行化简使其小于某个式子,再代入无限小整数进行运算,此时应该剩下一个含x的式子,在规定x的范围时,首先要考虑x与无限小整数的关系,其次要考虑x在限定去心邻域时规定的范围。
3.在题中遇到根号下的平方,需要将平方不顾一切的从根号里开出来,需要使用放缩手段。
4.在题中遇到三角函数,首先思考是否可以进行放缩。
5.当一个分式上下存在x时,需要先消去某一侧的x,常用方法:首先限定x在某个去心邻域内,然后列出常见的极限不等式,此时分数线上下存在两个绝对值不等式,其中一个利用三角不等式进行化简并使用去心邻域的值进行放缩,然后进行极限列式并注意限定x范围。
6.多个式子相乘可以把tanx写成sinx和cosx的 形式便于放缩
7.出现sinx与cosx与其他式子相乘时,注意有界函数乘无穷小等于无穷小
8.注意逼近要么是常数要么是无穷大,不能逼近某个带x的式子
9.sina-sinb=cos2/a+b*sin2/a-b