微积分期中考试选择题总结

本文探讨了特殊的函数定义,包括符号函数的特性,数列保号性的概念以及高阶无穷小的处理。强调了极限和导数的判定规则,提醒读者充分条件在数学中的重要性,同时指出可导与可微的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.特殊的函数

        1.符号函数,指当x等于0时y等于0,当x大于0时y等于1,当x小于0时y等于-1

2.概念辨析

        1.数列的保号性:假设数列的第n项大于0,则数列的极限大于等于0,可以参考x分之一

        2.o(x)为高阶无穷小,而高阶无穷小的表示和求解很简单:比如x+o(x的平方)是否等于o(x的立方),而验证方法为:x加o(x的平方)除x的立方是否等于0,而等于0时等式成立

        3.任何极限的和存在并不证明极限存在,尤其注意导数存在的判定

        4.注意充分条件,必要条件和充分必要条件

        5.可导等价于可微,而极限的四则运算存在不能说明极限存在

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值