1.问题整体复制,让你快速找到我
【问题描述】
已知含有n个顶点的带权连通无向图,采用邻接矩阵存储,邻接矩阵以三元组的形式给出,只给出不包括主对角线元素在内的下三角形部分的元素,且不包括不相邻的顶点对。请采用Prim算法,求该连通图从1号顶点出发的最小生成树的权值之和。
【输入形式】
第一行给出结点个数n和三元组的个数count,以下每行给出一个三元组,数之间用空格隔开。(注意这里顶点的序号是从1到n,而不是0到n-1,程序里要小心!)
【输出形式】
求解的最小生成树的各条边、边的权值之和
【样例输入】
5 8
2 1 7
3 1 6
3 2 8
4 1 9
4 2 4
4 3 6
5 2 4
5 4 2
【样例输出】
1-3:6
3-4:6
4-5:2
4-2:4
18
【样例说明】
权值是正整数,可能很大,但不需要考虑整型溢出问题
2.不多废话,先复制
#include<iostream>
using namespace std;
#define MAX 99999
#define MAXNUM 100
typedef struct AdjMatrix
{
int vexnum, arcnum;
int arcs[MAXNUM][MAXNUM];
}AdjMatrix;
typedef struct a
{
int adjvex;
int lowcost;
}closedge;
AdjMatrix g;
void CreateGraph(AdjMatrix& g)
{
int i, j;
int a, b, c;
cin >> g.vexnum >> g.arcnum;
for (i = 1; i <= g.vexnum; i++)
{
for (j = 1; j <= g.vexnum; j++)
{
g.arcs[i][j] = MAX;
}
}
for (i = 1; i <= g.arcnum; i++)
{
cin >> a >> b >> c;
g.arcs[a][b] = c;
g.arcs[b][a] = c;
}
}
int Minium(closedge c[])
{
int Min = MAX, Mini;
for (int i = 1; i <= g.vexnum; i++)
{
if (c[i].lowcost != 0 && c[i].lowcost < Min)
{
Min = c[i].lowcost;
Mini = i;
}
}
return Mini;
}
void MiniSpanTree_Prim(AdjMatrix g, int u = 1)
{
int sum = 0;
closedge c[MAXNUM + 1];
c[u].lowcost = 0;
for (int i = 1; i <= g.vexnum; i++)
{
if (i != u)
{
c[i].adjvex = u;
c[i].lowcost = g.arcs[u][i];
}
}
for (int e = 1; e <= g.vexnum - 1; e++)
{
int v = Minium(c);
sum += c[v].lowcost;
cout << c[v].adjvex << "-" << v << ":" << c[v].lowcost << endl;
c[v].lowcost = 0;
for (int i = 1; i <= g.vexnum; i++)
{
if (g.arcs[v][i] < c[i].lowcost)
{
c[i].lowcost = g.arcs[v][i];
c[i].adjvex = v;
}
}
}
cout << sum << endl;
}
int main()
{
CreateGraph(g);
MiniSpanTree_Prim(g, 1);
return 0;
}
3.简单聊聊思想
传送门:图的最小生成树算法:普利姆算法(c++实现)-CSDN博客,为什么这个搞不定?原因就在于遍历的方式上,第二种路径更为完整,第一种会缺东西