- 博客(19)
- 收藏
- 关注
原创 2021 年中国高校大数据挑战赛 智能运维中的异常检测与趋势预测 研究生组一等奖
摘要问题描述问题分析与求解数据及问题分析问题一基于SVR时序预测的异常检测结果分析问题二基于 LightGBM 的异常预测结果分析问题三基于粒度计算的预测结果分析基于深度迁移Seq2Seq-LSTM模型的趋势预测结果分析
2023-03-19 11:45:50 353
原创 C++优先队列
基本用法:https://blog.csdn.net/weixin_36888577/article/details/79937886结构体优先队列,自定义排序函数:https://blog.csdn.net/tsam123/article/details/85220284
2021-05-02 09:39:36 157
原创 C++容器 vector(附代码实例讲解)
vectorvector是一个封装了动态大小数组的顺序容器。它可以存放各种类型的对象,并且严格地将它们按照线性顺序排序,可以用位置对它们进行索引。作为一种动态大小的数组,vector提供了在其末端进行快速添加和删除元素的操作。另外,vector使用一个容器分配器对象来动态的处理它的存储需求。基本的方法1.头文件#include<vector>using namespace std;2.vector的构造vector<int> nums;//初始化为空vector&l
2021-04-05 17:19:12 945
原创 高斯过程回归GPR和多任务高斯过程MTGP原理
文章目录高斯过程回归多任务高斯过程文献阅读文献[1]文献[2]文献[3]文献[4]文献[5]文献[6]编程实现参考文献和资料本文介绍了高斯过程回归GPR以及多任务高斯过程MTGP的原理,并且对几篇使用相关方法的论文进行了简述,最后附上对两种方法的编程实现。所有内容的是从我自己的总结文档中截取的不足之处,欢迎指正。高斯过程回归高斯过程以概率分布来表示函数输出的先验知识,并在泛函空间建立模型,基于数据间的相关性,构造协方差函数,通过Bayesian推理进行计算,与点秀的神经网络、支持向量机相比,高斯
2021-04-04 16:59:51 4609
转载 string容器用法
string 容器用法string型变量的使用并不需要特殊的头文件,但是一部分的string字符串的操作在使用时需要加上头文件:#include<string>用法(1)直接给string对象赋值string s;s="abcd"(2)把字符指针赋值给一个字符串对象string s;char a[1000];scanf("%s",&a);//scanf的输入速度比cin快,且scanf不支持string对象s=a;(3)常用方法string s;stri
2021-03-31 16:01:18 151
原创 stack容器的使用
stack容器stack是堆栈容器,是一种“先进后出”的容器。stack是基于deque容器而实现的容器。使用#include<stack>//头文件stack对象的默认构造stack采用模板类实现, stack对象的默认构造形式:stack stkT;stack<int> stkint;stack<float> stkfloat;stack<string> stkstr;也可以设置指针类型或者自定义的结构体类型。出栈和入栈操作st
2021-03-30 16:02:33 4851
原创 unordered_map 容器的使用
简介它是一个关联容器,内部采用的是hash表结构,拥有快速检索的功能。它有如下特性:关联性:通过key去检索value,而不是通过绝对地址(和顺序容器不同);无序性:使用hash表存储,内部无序Map : 每个值对应一个键值键唯一性:不存在两个元素的键一样动态内存管理:使用内存管理模型来动态管理所需要的内存空间使用unordered_map<const Key, T> mp;//定义unordered_map<int,int> mp;//定义unordered
2021-03-29 14:13:38 92
原创 MathorCup高校数学建模挑战赛——大数据竞赛 赛道A 移动通信基站流量预测baseline
文章目录前言一、简单分析二、具体程序1.引入库2.读入数据3.数据处理4.模型训练和预测5.结果文件输出总结前言本文给出2020年MathorCup高校数学建模挑战赛——大数据竞赛中的赛道A移动通信基站流量预测的baseline,这个题目的具体描述和数据集请见链接。整个程序是用python写的,步骤包括文件读取、数据处理、特征构造、模型训练和预测、输出文件保存。读者可以在本文的基础上进行模型的提升。一、简单分析本文的训练数据有9G左右的大小,且特征字段是中文的,panda读取的时候需要注意。另外
2020-12-27 15:27:48 10943 68
原创 2020CCFBDCI训练赛之室内用户运动时序数据分类0.95分方案(tsfresh的使用)
室内用户运动时序数据分类赛题介绍数据简介baseline程序tsfresh对时序数据进行特征提取lgb训练和分类模型融合结果按格式写入csv文件提交结果本文在上一篇室内用户时序数据分类的baseline基础上,融合特征提取和树模型对方案进行了提升改进赛题介绍赛题名:室内用户运动时序数据分类赛道:训练赛道背景:随着数据量的不断积累,海量时序信息的处理需求日益凸显。作为时间序列数据分析中的重要任务之一,时间序列分类应用广泛且多样。时间序列分类旨在赋予序列某个离散标记。传统特征提取算法使用时间序列中的统
2020-12-07 11:10:40 1556 12
原创 时间序列预测之区间预测方法(PIs:MVE&Delta&Bayesian&Bootstrap&LUBE)
文章目录前言一、预测区间的评价指标1.PICP(PI coverage probability)2.PINAW(PI normalized averaged width)3.CWC(coverage width-based criterion)4.ACE(average coverage error)5.AIS(average interval score)6.MPICD(mean PI centre deviation)二、区间预测方法综述1.Mean Variance Estimation(MVE)2.
2020-12-01 11:12:50 29222 45
原创 2020CCFBDCI通用音频分类CNN方案(0.90+方案)
通用音频分类赛题介绍数据简介import的包音频文件读取特征构造CNN多分类提取预测结果并写入csv文件改进方向参考文献博主继续入门了音频分类问题,根据上一个baseline中的改进方向,写了一个基于CNN的baseline,线上分数0.90左右,随便调一下能到0.93赛题介绍赛题名:通用音频分类赛道:训练赛道背景:随着移动终端的广泛应用以及数据量的不断积累,海量多媒体信息的处理需求日益凸显。作为多媒体信息的重要载体,音频信息处理应用广泛且多样,如自动语音识别、音乐风格识别等。有些声音是独特的,可
2020-11-30 10:52:01 6051 23
原创 如何使用python操作数据库(pymysql库的使用)
文章目录前言一、pymysql是什么?二、使用步骤1.引入库2.数据的插入总结前言做项目的时候,需要用python来操作数据库,为此学习了pymysql的使用,下面做一下比较实用的简要总结一、pymysql是什么?pymysql是在 Python3.x 版本中用于连接 MySQL 服务器的一个库,Python2中是使用mysqldb。pymysql是基于PEP 249的,其官网是https://pypi.org/project/PyMySQL/有一些博客已经对pymysql的使用进行了介绍,本文
2020-11-27 22:14:18 1018
原创 如何使用python读取modbus/TCP协议数据
文章目录前言一、modbus_tk是什么?二、modbus_tk的使用步骤三、使用modscan测试四、32位无符号短整型数据转为64位float数据五、总结前言在做项目的时候,需要使用python来实时读取网线通过Modbus/TCP协议传输过来的数据。今天总结一下如何使用python来读取Modbus/TCP协议数据。先介绍需要使用的模块modbus_tk,再介绍如何使用modbus_tk、如何调试以及如何将读取的无符号短整型整数转化为64位的float类型数据(这一块网上只有文字过程描述,没有简
2020-11-27 21:46:54 11984 5
原创 hdu1257+1232+1213
hdu1257+1232+12131257是一个dp问题,1232和1213则是两个并查集问题1257由题意可知,如果第i发导弹之前的导弹中有高度比第i发导弹低的导弹,那么所需的拦截系统的个数就要加一。设dp[i]表示前i发导弹所需要的拦截系统的个数。#include<cstdio>#include<algorithm>#include<iostream>#include<mem.h>#include<math.h>using n
2020-11-22 20:58:33 101
原创 2020CCFBDCI训练赛之通用音频分类baseline
通用音频分类赛题介绍数据简介import的包音频文件读取特征构造lgb多分类提取预测结果并写入csv文件改进方向参考文献博主是音频分类小白,这两天刚入门,写个baseline记录一下,而且由于时间有限,代码简陋,请各位大神轻喷。赛题介绍赛题名:通用音频分类赛道:训练赛道背景:随着移动终端的广泛应用以及数据量的不断积累,海量多媒体信息的处理需求日益凸显。作为多媒体信息的重要载体,音频信息处理应用广泛且多样,如自动语音识别、音乐风格识别等。有些声音是独特的,可以立即识别,例如婴儿的笑声或吉他的弹拨声。
2020-11-20 16:45:44 2552 10
原创 hdu2602+2191+1864
hdu2602+2191+1864这三道题依然是dp,需要注意的是开dp数组的大小,因为这个RE过;2602这是一道01背包模板题#include<cstdio>#include<algorithm>#include<iostream>#include<mem.h>#include<math.h>using namespace std;int i,j,T,N,V,v[1005],w[1005],dp[1005];int mai
2020-11-17 22:16:28 105
原创 hdu1171+1203+2546
hdu1171+1203+2546这三题都是常规的dp,可以转化为经典的01背包问题,要注意的是为了防止内存超限,不能使用二维的dp数组,要用一维的。1171题目可以简单的描述为将组不同大小的数分成两堆,使两堆数的总和尽可能的接近,要注意每组数据之前要进行初始化,否则会WAstep1:要将数据按照个数和大小统一存到一个一维数组中,统计总和sumstep2:假设“背包”的容量为sum/2,进行01背包dp过程#include<cstdio>#include<algorithm&
2020-11-16 21:10:28 91
原创 2020CCFBDCI训练赛之室内用户运动时序数据分类baseline
室内用户时序数据分类赛题介绍数据简介数据分析Baseline程序提交结果赛题介绍赛题名:室内用户运动时序数据分类赛道:训练赛道背景:随着数据量的不断积累,海量时序信息的处理需求日益凸显。作为时间序列数据分析中的重要任务之一,时间序列分类应用广泛且多样。时间序列分类旨在赋予序列某个离散标记。传统特征提取算法使用时间序列中的统计信息作为分类的依据。近年来,基于深度学习的时序分类取得了较大进展。基于端到端的特征提取方式,深度学习可以避免繁琐的人工特征设计。如何对时间序列中进行有效的分类,从繁芜丛杂的数据集
2020-11-08 16:01:05 3542 13
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人