Python绘制频率分布直方图
项目中在前期经常要看下数据的分布情况,这对于探究数据规律非常有用。概率分布表示样本数据的模样,长的好不好看如果有图像展示出来就非常完美了,使用Python绘制频率分布直方图非常简洁,因为用的频次非常高,这里记录下来。还是Python大法好,代码简洁不拖沓~
如果数据取值的范围跨度不大,可以使用等宽区间来展示直方图,这也是最常见的一种;如果数据取值范围比较野,也可以自定义区间端点,绘制图像,下面分两种情况展示
plt.hist函数中有个参数normed默认是None,表示不对数据进行归一化,这个情况绘制出来的就是频次直方图,加了normed=True,之后就是标准的频率直方图
1. 区间长度相同绘制直方图
#-*- encoding=utf-8 -*-
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc')
# 按照固定区间长度绘制频率分布直方图
# bins_interval 区间的长度
# margin 设定的左边和右边空留的大小
def probability_distribution(data, bins_interval=1, margin=1):
bins = range(min(data), max(data) + bins_interval - 1, bins_interval)
print(len(bins))
for i in range(0, len(bins)):
print(bins[i])
plt.xlim(min(data) - margin, max(data) + margin)
plt.title("Probability-distribution")
plt.xlabel('Interval')
plt.ylabel('Probability')
# 频率分布normed=True,频次分布normed=False
prob,left,rectangle = plt.hist(x=data, bins=bins, normed=True, histtype='bar', color=['r'])
for x, y in zip(left, prob):
# 字体上边文字
# 频率分布数据 normed=True
plt.text(x + bins_interval / 2, y + 0.003, '%.2f' % y, ha='center', va='top')
# 频次分布数据 normed=False
# plt.text(x + bins_interval / 2, y + 0.25, '%.2f' % y, ha='center', va='top')
plt.show()
2. 区间长度不同绘制频次直方图
#-*- encoding=utf-8 -*-
import datetime
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\Windows\Fonts\simsun.ttc'
# 自己给定区间,小于区间左端点和大于区间右端点的统一做处理,对于数据分布不均很的情况处理较友好
# bins 自己设定的区间数值列表
# margin 设定的左边和右边空留的大小
# label 右上方显示的图例文字
"""e
import numpy as np
data = np.random.normal(0, 1, 1000)
bins = np.arange(-5, 5, 0.1)
probability_distribution_extend(data=data, bins=bins)
"""
def probability_distribution_extend(data, bins, margin=1, label='Distribution'):
bins = sorted(bins)
length = len(bins)
intervals = np.zeros(length+1)
for value in data:
i = 0
while i < length and value >= bins[i]:
i += 1
intervals[i] += 1
intervals = intervals / float(len(data))
plt.xlim(min(bins) - margin, max(bins) + margin)
bins.insert(0, -999)
plt.title("probability-distribution")
plt.xlabel('Interval')
plt.ylabel('Probability')
plt.bar(bins, intervals, color=['r'], label=label)
plt.legend()
plt.show()
Case示例
if __name__ == '__main__':
data = [1,4,6,7,8,9,11,11,12,12,13,13,16,17,18,22,25]
probability_distribution(data=data, bins_interval=5,margin=0)
效果如下图
频次分布直方图
频率分布直方图