动态规划算法的笔记

动态规划笔记(一)

算法基础
基本思想

聊一下动态规划算法的思想,动态规算法和分治法有些像,都是将问题分解成若干个子问题,然后通过子问题的解来得到原问题的解,但是与分治法的区别在于,适合动态规划的问题分解的子问题往往不是相互独立的,如果用分治法来解,很多子问题会重复计算很多次,而动态规划会使用表来保存这些子问题的解,避免重复计算

基本性质

可以使用动态规划算法解决的问题有两个重要的性质:最优子结构和重叠子问题

最优子结构 问题的最优解包含了子问题的最优解
重叠子问题 使用递归算法自顶向下解决问题的时候,每次产生的子问题并不总是新的子问题,有些子问题被反复计算多次。动态规划利用这个性质,对每个子问题只求解一次,将结果保存在一张表这, 便于以后直接利用这些子问题的解

基本步骤

step 1:找出问题最优解的结构特征
step 2:按照问题递归定义列出动态规划方程
step 3:自底向上计算最优值
step 4:按照计算的最优值,递归构造最优解

以矩阵连乘为例
问题定义

矩阵 A i A_i Ai的行列数量分别为 p i p_i pi p i + 1 p_{i+1} pi+1,矩阵连乘是符合结合律的,也就是 A i A i + 1 A i + 2 = ( A i A i + 1 ) A i + 2 = A i ( A i + 1 A i + 2 ) A_iA_{i+1}A_{i+2}=(A_iA_{i+1})A_{i+2}=A_i(A_{i+1}A_{i+2}) AiAi+1Ai+2=(AiAi+1)Ai+2=Ai(Ai+1Ai+2);假设 A i = A 10 × 50 , A i + 1 = A 50 × 30 , A i + 2 = A 30 × 20 A_i=A_{10\times50},A_{i+1}=A_{50\times30},A_{i+2}=A_{30\times20} Ai=A10×50,Ai+1=A50×30,Ai+2=A30×20
第一种结合方式:括号中乘法数量为 10 × 50 × 30 = 15000 10\times50\times30=15000 10×50×30=15000,结合后再乘以 A i + 2 A_{i+2} Ai+2,这部分乘法数量为 10 × 30 × 20 = 6000 10\times30\times20=6000 10×30×20=6000,总的数量为 15000 + 6000 = 21000 15000+6000=21000 15000+6000=21000
第二章结合方式:括号中的乘法数量为 50 × 30 × 20 = 30000 50\times30\times20=30000 50×30×20=30000 A i A_i Ai乘以括号结果,乘法数量为 10 × 50 × 20 = 10000 10\times50\times20=10000 10×50×20=10000,总数量为 30000 + 10000 = 40000 30000+10000=40000 30000+10000=40000
可以中看出不同结合方式的计算量是显著不同的,现在有 A 1 A 2 . . . A n A_1A_2...A_n A1A2...An总共n个矩阵连乘,如何确定最佳矩阵乘法结合(加括号)方式?

问题的解

step 1:寻找最优子结构

假设 A i A i + 1 . . . A j A_iA_{i+1}...A_j AiAi+1...Aj最优解加括号方式是在 A k A_k Ak除分开,即最优的结合方式分成了两个子链 A i A i + 1 . . . A k A_iA_{i+1}...A_k AiAi+1...Ak A k + 1 A k + 2 . . . A j A_{k+1}A_{k+2}...A_j Ak+1Ak+2...Aj,则两个子链分别是两个子问题即矩阵连乘 A i A i + 1 . . . A k A_iA_{i+1}...A_k AiAi+1...Ak和矩阵连乘 A k + 1 A k + 2 . . . A j A_{k+1}A_{k+2}...A_j Ak+1Ak+2...Aj的最优加括号方式。反证法:如果子矩阵连乘问题 A i A i + 1 . . . A k A_iA_{i+1}...A_k AiAi+1...Ak有更优的加括号结合方式,那么将这个方式加入到矩阵 A i A i + 1 . . . A j A_iA_{i+1}...A_j AiAi+1...Aj中去,就会得到另一种加括号方式,代价小于 A i A i + 1 . . . A j A_iA_{i+1}...A_j AiAi+1...Aj的最优加括号方式,与假设矛盾。因此矩阵连乘 A i A i + 1 . . . A j A_iA_{i+1}...A_j AiAi+1...Aj的最优加括号方式也包括了子问题 A i A i + 1 . . . A k A_iA_{i+1}...A_k AiAi+1...Ak和子问题 A k + 1 A k + 2 . . . A j A_{k+1}A_{k+2}...A_j Ak+1Ak+2...Aj的最优加括号方式,符合动态规划问题性质1——最优子结构。

例如要计算矩阵连乘 A 1 A 2 A 3 A 4 A_1A_2A_3A_4 A1A2A3A4问题,我们有很多子问题的计算是重复的,如果有分治法就会有很多重复计算,如下图,这就满足动态规划的性质2——重叠子问题
在这里插入图片描述
step 2:列出动态规划方程
定义 A i A i + 1 . . . A j A_iA_{i+1}...A_j AiAi+1...Aj需要的最少计算次数为 m [ i ] [ j ] m[i][j] m[i][j],原问题的的最优解就是 m [ 1 ] [ n ] m[1][n] m[1][n],当 i = = j i == j i==j时,只有一个矩阵,此时 m [ i ] [ j ] = 0 m[i][j] = 0 m[i][j]=0 i &lt; j i &lt; j i<j可以用最优子结构来解。设 A i A i + 1 . . . A j A_iA_{i+1}...A_j AiAi+1...Aj最优加括号方式在 A k A_k Ak A k + 1 A_{k+1} Ak+1处分开,则
m [ i ] [ j ] = m [ i ] [ k ] + m [ k + 1 ] [ j ] + p i − 1 p k p j m[i][j] = m[i][k] + m[k+1][j] + p_{i-1}p_kp_j m[i][j]=m[i][k]+m[k+1][j]+pi1pkpj
这个公式我们假设已经知道最优分开位置在 k k k处,但是实际上我们是不知道的,然后最优的分开的位置只有 j − i j-i ji种可能,即 k = i , i + 1 , . . . , j − 1 k = i, i+1, ..., j-1 k=i,i+1,...,j1。因此,递归方程可以写为如下
m [ i ] [ j ] = { 0 , i = j m i n { m [ i ] [ k ] + m [ k + 1 ] [ j ] + p i − 1 p k p j } , i &lt; = k &lt; j m[i][j]=\left\{\begin{array}{cc} 0, &amp; i=j\\ min\{m[i][k] + m[k+1][j] +p_{i-1}p_kp_j\}, &amp; i &lt;= k &lt; j \end{array}\right. m[i][j]={0,min{m[i][k]+m[k+1][j]+pi1pkpj},i=ji<=k<j

我们的目标是计算 m [ 1 ] [ n ] m[1][n] m[1][n]
m [ 1 ] [ n ] = { 0 , n = 1 m i n { m [ 1 ] [ k ] + m [ k + 1 ] [ n ] + p 0 p k p n } , 1 &lt; = k &lt; n m[1][n]=\left\{\begin{array}{cc} 0, &amp; n=1\\ min\{m[1][k] + m[k+1][n] +p_{0}p_kp_n\}, &amp; 1 &lt;= k &lt; n \end{array}\right. m[1][n]={0,min{m[1][k]+m[k+1][n]+p0pkpn},n=11<=k<n
这里有n个矩阵相乘,我们分解为子问题,单个矩阵乘法运算为0,即下表中第一条对角线 m [ i ] [ i ] m[i][i] m[i][i],有乘法运算的最小粒度为两个矩阵,所以最先计算所有的两个相邻矩阵的连乘结果,即下表中第二条对角线 m [ i ] [ i + 1 ] m[i][i+1] m[i][i+1],相邻两个计算完成后,再计算第三条对角线 m [ i ] [ i + 2 ] m[i][i+2] m[i][i+2]的结果,一直到最后一条对角线 m [ 1 ] [ n ] m[1][n] m[1][n]

-123n
1m[1][1]m[1][2]m[1][3]m[1][n]
2m[2][2]m[2][3]m[2][n]
3m[3][3]m[3][n]
km[k][k]m[k][n]
nm[n][n]

step 3:计算最优值

void MartrixChain(int n,int *p,int **m,int **s)
{
	for(int t=0;t<n;t++)                
	{
		m[t][t]=0;             //单一矩阵的情况 
		s[t][t]=-1;
	}                                 
	for(int l=2;l<=n;l++)               //l为段长 
	{
		for(int i=0;i<=n-l;i++)
		{
			int j=i+l-1;              //j为每段的起点   
			m[i][j]=m[i][i]+m[i+1][j]+p[i]*p[i+1]*p[j+1];     //类似于赋初值的功能,其可取i<=k<j中的任意一个
			s[i][j]=i;
			for(int k=i+1;k<j;k++)                         //改变断点,试探出最小的情况
			{
				if(m[i][k]+m[k+1][j]+p[i]*p[k+1]*p[j+1]<m[i][j])
				{
					m[i][j]=m[i][k]+m[k+1][j]+p[i]*p[k+1]*p[j+1];
					s[i][j]=k;                            //记录断点位置(构造最优值需要)
				}
			}
		}
	}
	cout<<"\n最少数乘为 "<<m[0][n-1]<<endl<<endl;
}

step 4:构造最优解
上面求解的时候记录了矩阵分开时的端点位置,用 A [ 1 , n ] A[1,n] A[1,n]表示 A 1 A 2 . . . A n A_1A_2...A_n A1A2...An的连乘结果,假设 s [ 1 ] [ n ] = k s[1][n]=k s[1][n]=k,则 A [ 1 , n ] A[1,n] A[1,n]的最佳加括号方式为 ( A [ 1 , k ] ) ( A [ k + 1 , n ] ) (A[1,k])(A[k+1,n]) (A[1,k])(A[k+1,n]),即 ( A [ 1 , s [ 1 ] [ n ] ] ) ( A [   s [ 1 ] [ n ] ] + 1 , n ) (A[1,s[1][n]])(A[\ s[1][n]] +1,n) (A[1,s[1][n]])(A[ s[1][n]]+1,n),而 A [ 1 , s [ 1 ] [ n ] ] A[1,s[1][n]] A[1,s[1][n]]的最优加括号方式如下
( A [ 1 , s [ 1 ] [ s [ 1 ] [ n ] ] ] ) ( A [   s [ s [ 1 ] [ n ] ] ] + 1 , s [ 1 ] [ n ] ) (A[1,s[1][s[1][n]]])(A[\ s[s[1][n]]] +1,s[1][n]) (A[1,s[1][s[1][n]]])(A[ s[s[1][n]]]+1,s[1][n])
不断递归就能找到最优解了

void TraceBask(int i,int j,int **s)
{
	if(i==j)
		{cout<<"A"<<i;}
	cout<<"(";
	TraceBask(i,s[i][j],s);
	TraceBask(s[i][j]+1,j,s);
	cout<<")";
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值