PAT 1002 A+B for Polynomials

这篇博客介绍了两种方法实现多项式求和的C++算法,包括使用结构体存储系数和指数,以及直接用数组记录。同时强调了在输出结果时如何设置精度以保留小数点后一位。代码示例展示了如何处理相等和不等指数的情况,并在最后输出结果时正确应用精度控制。
摘要由CSDN通过智能技术生成

原题

在这里插入图片描述

思想

这题踩了输出格式的坑,精度得保留小数点后一位。

设置小数位数法:
cout<<setiosflags(ios::fixed)<<setprecision(1);
当setiosflags(ios::fixed)和serprecision(n)两个一起用时就表du示保留n位小数输出。这里还要注意,每次输出只要设置一次就行了,因为这两个的作用范围是后续对象,而不是仅对后一个对象起作用。

这里我用了2种方法。

  • 方法一采用i,j指针分别控制A和B,判断系数相等和不相等的情况
  • 方法二采用数组直接记录,下标表示指数,数组存的值表示系数,输入A和B都在一个a[ ]中完成运算

代码

方法一

/** 1002 A+B for Polynomials (25分)
 * 
 * exponents 指数 coefficients 系数
 * */
#include<iostream>
#include <iomanip>
using namespace std;
struct 
{
    int k;
    int exp[1000];
    double coe[1000];
}poly[3];

int main()
{
    for(int i=0;i<2;i++)
    {
        cin>>poly[i].k;
        for (int j = 0; j < poly[i].k; j++)
        {
            cin>>poly[i].exp[j];
            cin>>poly[i].coe[j];
        }
    }
    int i=0,j=0,k=0;
    while (i<poly[0].k && j<poly[1].k)
    {
        // 当A的第i位指数和B的第j位指数相同,系数相加
        if(poly[0].exp[i]==poly[1].exp[j])
        {
            if(poly[0].coe[i]+poly[1].coe[j]==0)
            {
                i++,j++;
                continue;
            }
            poly[2].exp[k]=poly[0].exp[i];
            poly[2].coe[k]=poly[0].coe[i]+poly[1].coe[j];
            i++,j++;
        }
        // A的第i位比B 第j位大
        else if(poly[0].exp[i]>poly[1].exp[j])
        {
            poly[2].exp[k]=poly[0].exp[i];
            poly[2].coe[k]=poly[0].coe[i];
            i++;
        }
        else
        {
            poly[2].exp[k]=poly[1].exp[j];
            poly[2].coe[k]=poly[1].coe[j];
            j++;
        }
        k++;
    }
    for(;i<poly[0].k;i++)
    {
        poly[2].exp[k]=poly[0].exp[i];
        poly[2].coe[k]=poly[0].coe[i];
        k++;
    }
    for(;j<poly[1].k;j++)
    {
        poly[2].exp[k]=poly[1].exp[j];
        poly[2].coe[k]=poly[1].coe[j];
        k++;
    }
    cout<<k;
    for (int i = 0; i < k; i++)
    {
        cout<<" "<<poly[2].exp[i]<<setiosflags(ios::fixed)<<setprecision(1)<<" "<<poly[2].coe[i];
    }
    

    return 0;
}

方法二

/** 1002 A+B for Polynomials (25分)
 * 
 * exponents 指数 coefficients 系数
 * */
#include<iostream>
#include <iomanip>
using namespace std;
double a[1000];

int main()
{
    int n,j,imax=0,sum=0;
    double t;
    cin>>n;
    for (int i = 0; i < n; i++)
    {
        cin>>j;
        cin>>a[j];
        imax=max(imax,j);
    }
    cin>>n;
    for (int i = 0; i < n; i++)
    {
        cin>>j;
        cin>>t;
        a[j]+=t;
        if(a[j]!=0)
            imax=max(imax,j);
    }
    for (int i = 0; i <=imax; i++)
    {
        if(a[i]!=0)sum++;
    }
    cout<<sum;
    for (int i = imax; i >= 0; i--)
    {
        if(a[i]!=0)
        cout<<" "<<i<<setiosflags(ios::fixed)<<setprecision(1)<<" "<<a[i];
    }
    
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值