Longest Common Substring II(后缀数组+二分答案)

该博客介绍了如何利用后缀数组和二分查找策略求解多行字符串的最长公共子串(LCS)。首先,通过连接字符串并插入一个特殊字符构建后缀数组和h数组。接着,对于两个字符串的情况,遍历h数组找到满足特定条件的最大值作为答案。当字符串数量增加时,依然采用类似方法,但用二分查找来确定LCS的长度,并检查相应后缀是否来自不同的原始字符串。
摘要由CSDN通过智能技术生成

题意:
输入多行串(不超过10行),求这些串的LCS(最长公共子串)

思路:
利用LCP求LCS。考虑只有两个串的情况,我们把两个串连接(中间加一个没出现的字符),后缀数组求h数组,然后遍历h数组,找满足sa[i-1],sa[i]分别位于不同串位置的和h[i]的最大值即为答案。这也是Longest Common Substring的思路。
那么当输入串不止两个时,还是根前面一样建立后缀数组求h数组,然后二分答案长度,对于当前长度,我们找一组连续大于当前长度的h值[l,r],然后只需要判断sa[l-1,r]是否分别来自不同的串。
code:

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int Max=1e6+20;
char s[Max],c[Max];
char e[15]={
   '~',',','@','#','$','%','^','&','*','(',')','/','='};
int cnt[Max];
ll h[Max];
int q[Max];
int sa[Max];
int id[Max],rk[Max<<1],odrk[Max<<1],px[Max];
bool k[20];
int n,all,t;
bool cmp(int x,int y,int w)
{
   
    return odrk[x]==odrk[y]&&odrk[x+w]==odrk[y+w];
}
void SA(<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值