- 线性模型基本形式
-
- 线性回归
我们将数据集的数据量记为m,向量x的维数即数据的属性数目记为k,试图学得:
线性回归就是要找到向量w和b,使得我们的预测值和实际样本的值y的均方误差最小。
求导过程如下:
最后我们可以求得w,b的值。
更一般的情况下,我们将b吸收进向量w中,并在每一行属性值的后面增加元素1。
如:
那么可以得到西瓜书3.9公式
https://pan.baidu.com/s/1EXCwba9tBX6aXfonWlFAWg
(3.10推导过程来自网友,侵删)
-
- 对数线性回归
线性回归模型可以简写为:
这个模型使得我们的预测值逼近真实值y,当我们的输出值y是在指数级别变化时,我们可以这样使用线性回归模型预测y。
-
- 广义线性模型