3、C++标准库基础概念全解析

C++标准库基础概念全解析

1. 复杂度与大O表示法

在C++标准库的某些部分,尤其是STL,算法和成员函数的性能经过了仔细考量,标准对它们有特定的“复杂度”要求。计算机科学家使用大O表示法来比较算法的相对复杂度,通过这种方法可以快速对算法的相对运行时间进行分类,并对不同算法进行定性比较。

大O表示法将算法的运行时间表示为输入规模n的函数。例如,如果运行时间随元素数量线性增长(输入翻倍,运行时间也翻倍),复杂度就是O(n);如果运行时间与输入无关,复杂度就是O(1)。以下是常见复杂度类型及其大O表示法:
| 类型 | 表示法 | 含义 |
| ---- | ---- | ---- |
| 常数 | O(1) | 运行时间与元素数量无关 |
| 对数 | O(log(n)) | 运行时间随元素数量对数增长 |
| 线性 | O(n) | 运行时间随元素数量线性增长 |
| n - log - n | O(n * log(n)) | 运行时间是线性和对数复杂度的乘积 |
| 二次 | O(n²) | 运行时间随元素数量二次增长 |

需要注意的是,大O表示法会隐藏较小指数的因子(如常数因子)。实际上,两个线性算法在大O表示法下被认为是同等可接受的,但在某些情况下,线性算法中的常数可能非常大,以至于具有小常数的指数算法在实际中可能更可取。所以,大O表示法只是一个经验法则,复杂度最优的算法不一定是最好的算法。

下面的表格展示了不同复杂度在不同元素数量下的运行时间:
| 复杂度 | 元素数量:1 | 元素数量:2 | 元素数量:5 | 元素数量:10 | 元素数量:50 | 元素数量:100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值