java调用ai模型:使用国产通义千问完成基于知识库的问答

整体介绍:

基于RAG(Retrieval-Augmented Generation)技术,可以实现一个高效的Java智能问答客服机器人。核心思路是将预先准备的问答QA文档(例如Word格式文件)导入系统,通过数据清洗、向量化处理,并存储到向量数据库中。当用户提问时,系统首先识别并理解用户的查询意图,接着从向量数据库中检索出最相关的文档或数据,最后结合大模型生成准确的回答。整个过程利用了Java编程语言的优势,确保了系统的高效运行和维护性。这种方案不仅能够提升客服机器人的响应速度,还能保证答案的准确性与相关性,为用户提供优质的智能问答体验。

rag介绍:

检索增强生成 (RAG) 是一种技术,它结合了检索模型和生成模型,以私有知识库中的信息来辅助文本生成。这解决了使用大模型时常见的问题:模型可能会产生不准确的回答(即幻觉),以及缺乏企业特定数据导致的泛化回答。通过访问私有知识库,RAG能够提供更精准、更符合上下文的回复。

RAG的主要流程

在RAG(Retrieval-Augmented Generation)中,主要流程分为两个部分:索引构建流程和使用流程。

索引构建流程

首先进行数据准备。数据导入阶段,从各种来源收集原始数据,并对其进行清洗,包括去除噪音、处理缺失值等预处理操作,以确保数据的质量;然后将这些数据转换为适合向量化处理的格式。接下来是向量化模块,在这一阶段,利用预训练的语言模型(如BERT或GLP等)从已清洗的数据中提取特征并将其转换成向量形式。最后一步是数据存储与索引构建,这里会把上述生成的向量数据保存到数据库或文件系统里,并基于这些数据创建索引来加速后续的信息检索过程。

使用流程

当用户提出查询时,首先通过意图识别来分析用户的实际需求,并可能对初始问题进行改写优化以便更好地匹配潜在答案。接着进入检索阶段,系统依据之前建立的索引查找与当前问题高度相关的文档或信息片段。找到相关资料后,重排环节会根据内容的相关性和质量等因素调整搜索结果的顺序,使得最符合要求的答案优先显示。之后,输出接入步骤负责将筛选出的信息组织整理成易于理解的形式,并最终形成完整的回复文本。最后,该回复被呈现给用户,同时系统还能够收集用户反馈用于持续改进服务。

通义千问介绍

通义千问介绍

通义千问是由阿里集团输出的开源大模型服务,它支持全尺寸、多模态的大模型。在中文开源模型领域,通义千问具备显著的优势。以下是通义千问的核心能力、能力排行榜以及价格情况的详细介绍。

核心优势
  1. 能力排名靠前:通义千问在多个客观评测指标上表现优异,如MMLU、TheoremQA和GPQA等,超越了Llama 3 70B。特别是在国产大模型中,其竞技场模式下的性能仅次于OpenAI的GPT系列、Claude和GreK。
  1. 可访问性和合规性:通过API调用时,通义千问提供了安全保护措施,有效避免了恶意攻击问题。
  1. 完全开源:作为目前最为开放的模型之一,通义千问提供了全尺寸的多模态大模型开源版本,用户可以根据需求选择不同规模的模型。
  1. 价格合适:通义千问为用户提供100万免费token,并且调用API的成本相对较低。对于自
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值