给你一个 n(3≤n≤106) 个点的树,每个点 i 都有点权 ti,让你在树中去除两条边使得三部分的点权和相等,每一部分至少有一个点。
做法:
先求出所有点的点权和 all ,如果 all 不能整出3,则无解。因为删去一条边后,一个子树就没了,所以求出每一个子树 i 的点权和 sizi,如果 sizi=all/3 ,则删去连 i<script id="MathJax-Element-505" type="math/tex">i</script> 的那条边。
但有一些细节:
1. 即使 all 能整除 3,也不一定有两个点满足条件。
如样例:5 0 4 1 1 1 2 2 1 2 1
2. 即使有两个点满足,如果有一个点是根,也无解。
如样例:4 0 1 1 -1 2 1 3 -1
我因此 WA 了两次。。。我太不认真了。。。
#include<cstdio>#include<cstring>#include<iostream>#include<algorithm>#include<vector>usingnamespacestd;
constint N=1000010;
int n;
vector <int> V[N];
int beg, all, cnt;
int p[N], siz[N], ans[N];
void dfs(int u){
siz[u] = p[u];
for(int i=0, sz=V[u].size(), v; i<sz; ++i){
v = V[u][i];
dfs(v);
siz[u] += siz[v];
}
if(siz[u]==all){ ans[++cnt]=u; siz[u]=0; } // 记录答案
}
int main(){
scanf("%d",&n);
for(int i=1, x; i<=n; ++i){
scanf("%d%d", &x, &p[i]); all += p[i];
if(x) V[x].push_back(i);
else beg=i; // 找到起点
}
if(all%3){ puts("-1"); return0; } // all 必须整除 3
all /= 3;
dfs(beg);
if(cnt<2 || ans[2]==beg) puts("-1"); // 细节啦 elseprintf("%d %d\n",ans[1], ans[2]);
while(1);
}