【CodeForces 767C】Garland (树形DP)

题目描述:

garland

算法:

树形DP(思路较简单,但有难想到的细节)

题目大意:

给你一个 n(3n106) 个点的树,每个点 i 都有点权 ti,让你在树中去除两条边使得三部分的点权和相等,每一部分至少有一个点。

做法:

先求出所有点的点权和 all ,如果 all 不能整出3,则无解。因为删去一条边后,一个子树就没了,所以求出每一个子树 i 的点权和 sizi,如果 sizi=all/3 ,则删去连 i <script id="MathJax-Element-505" type="math/tex">i</script> 的那条边。
但有一些细节:
1. 即使 all 能整除 3,也不一定有两个点满足条件。
如样例:5 0 4 1 1 1 2 2 1 2 1
2. 即使有两个点满足,如果有一个点是根,也无解。
如样例:4 0 1 1 -1 2 1 3 -1
我因此 WA 了两次。。。我太不认真了。。。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

const int N=1000010;
int n;
vector <int> V[N];

int beg, all, cnt;
int p[N], siz[N], ans[N];

void dfs(int u){
    siz[u] = p[u];
    for(int i=0, sz=V[u].size(), v; i<sz; ++i){
        v = V[u][i];
        dfs(v);
        siz[u] += siz[v];
    }
    if(siz[u]==all){ ans[++cnt]=u; siz[u]=0; }      // 记录答案  
}

int main(){
    scanf("%d",&n);
    for(int i=1, x; i<=n; ++i){
        scanf("%d%d", &x, &p[i]); all += p[i];
        if(x) V[x].push_back(i);
        else beg=i;         // 找到起点  
    }
    if(all%3){ puts("-1"); return 0; }              // all 必须整除 3 
    all /= 3;
    dfs(beg);
    if(cnt<2 || ans[2]==beg) puts("-1");            // 细节啦  
    else printf("%d %d\n",ans[1], ans[2]);
    while(1);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值