【CodeForces 767C】Garland (树形DP)

题目描述:

garland

算法:

树形DP(思路较简单,但有难想到的细节)

题目大意:

给你一个 n(3n106) 个点的树,每个点 i 都有点权 ti,让你在树中去除两条边使得三部分的点权和相等,每一部分至少有一个点。

做法:

先求出所有点的点权和 all ,如果 all 不能整出3,则无解。因为删去一条边后,一个子树就没了,所以求出每一个子树 i 的点权和 sizi,如果 sizi=all/3 ,则删去连 i <script id="MathJax-Element-505" type="math/tex">i</script> 的那条边。
但有一些细节:
1. 即使 all 能整除 3,也不一定有两个点满足条件。
如样例:5 0 4 1 1 1 2 2 1 2 1
2. 即使有两个点满足,如果有一个点是根,也无解。
如样例:4 0 1 1 -1 2 1 3 -1
我因此 WA 了两次。。。我太不认真了。。。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector>
using namespace std;

const int N=1000010;
int n;
vector <int> V[N];

int beg, all, cnt;
int p[N], siz[N], ans[N];

void dfs(int u){
    siz[u] = p[u];
    for(int i=0, sz=V[u].size(), v; i<sz; ++i){
        v = V[u][i];
        dfs(v);
        siz[u] += siz[v];
    }
    if(siz[u]==all){ ans[++cnt]=u; siz[u]=0; }      // 记录答案  
}

int main(){
    scanf("%d",&n);
    for(int i=1, x; i<=n; ++i){
        scanf("%d%d", &x, &p[i]); all += p[i];
        if(x) V[x].push_back(i);
        else beg=i;         // 找到起点  
    }
    if(all%3){ puts("-1"); return 0; }              // all 必须整除 3 
    all /= 3;
    dfs(beg);
    if(cnt<2 || ans[2]==beg) puts("-1");            // 细节啦  
    else printf("%d %d\n",ans[1], ans[2]);
    while(1);
}
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值