2024.6.13

2024.6.13 【痛苦的,热烈的,误解的,无解的,快乐的,解脱的】

Thursday 五月初八


<theme = oi-“game theory”>

P4018 Roy&October之取石子

Roy&October之取石子

题目背景

Roy 和 October 两人在玩一个取石子的游戏。

题目描述

游戏规则是这样的:共有 n n n 个石子,两人每次都只能取 p k p^k pk 个( p p p 为质数, k k k 为自然数,且 p k p^k pk 小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。

现在 October 先取,问她有没有必胜策略。

若她有必胜策略,输出一行 October wins!;否则输出一行 Roy wins!

输入格式

第一行一个正整数 T T T,表示测试点组数。

2 2 2 ∼ \sim T + 1 T+1 T+1 行,一行一个正整数 n n n,表示石子个数。

输出格式

T T T 行,每行分别为 October wins!Roy wins!

样例 #1

样例输入 #1

3
4
9
14

样例输出 #1

October wins!
October wins!
October wins!

提示

对于 30 % 30\% 30% 的数据, 1 ≤ n ≤ 30 1\leq n\leq 30 1n30

对于 60 % 60\% 60% 的数据, 1 ≤ n ≤ 1 0 6 1\leq n\leq 10^6 1n106

对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 5 × 1 0 7 1\leq n\leq 5\times 10^7 1n5×107, 1 ≤ T ≤ 1 0 5 1\leq T\leq 10^5 1T105

(改编题)

//2024.6.13
//by white_ice
//Roy&October之取石子 | P4018
#include<bits/stdc++.h>
//#include"fopen.cpp"
using namespace std;
#define itn int
constexpr int oo = 0;

int t;
int n;

signed main(){
    //fre();

    ios::sync_with_stdio(0);
    cin.tie(0),cout.tie(0);

    cin >> t;
    while (t--){
        cin >> n;
        if (n%6)
            cout << "October wins!" << '\n';
        else cout << "Roy wins!" << '\n';
    }
    return 0;
}

从1,2,3,4,5几个角度考虑,

这几个都能一次取完,先手胜利。

6时,只能选两次,

后手必胜。

当n为6的倍数时,无论先手区多少,

如k,后手均可以取(k/6+1)*6-k个使其保留在六的倍数,

所以先手必胜。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值