2024.8.23


130124202408231008


DATE #:20240823

ITEM #:DOC

WEEK #:FRIDAY

DAIL #:捌月二十

TAGS
	
< BGM = "Forest Mixtape(Tsuki)" >
< theme = oi-graph theory Eulerian >
< [NULL] >
< [空] > 
< [空] >
冰岛的温柔是克莱因蓝再加点莫奈的灰。

BEST定理

BEST定理是用于处理欧拉回路计数问题的

我们首先做如下定义:

t x t_x tx为以x为根的树数量,可以使用矩阵树定理求解

d e g i deg_i degi为i的度

对于一个有向欧拉图,它的欧拉回路数量是:
t s d e g s ! ∏ i ∈ V ( d e g i − 1 ) ! [ i ≠ s ] = t x ∏ i ∈ V ( d e g i − 1 ) ! t_sdeg_s!\prod_{i\in V}(deg_i-1)![i\ne s]=t_x\prod_{i\in V}(deg_i-1)! tsdegs!iV(degi1)![i=s]=txiV(degi1)!

证明

我们发现,对于一个欧拉图而言,从每个点出发是一样的,所以考虑以1为起点

计算以1为根的生成树数量,将点i删去,在考虑生成树就是以该节点为根的生成树数量

生成树使用矩阵树定理求出


对于一棵树,我们这里激进一点,就让他是一棵根向树

对每一条边,我们给定一个顺序,指向根的顺序最靠后

那么顺序的方案数就是 d e g s ! ∏ ( d g e u − 1 ) ! [ u ≠ s ] deg_s!\prod(dge_u-1)![u\ne s] degs!(dgeu1)![u=s]

再乘上以1为根的生成树数量就是原式了

那么我们只要证明每种标号方案都对应这一种欧拉回路就可以了

在每次经过一条边后,我们删去它

剩下的边一定要满足如下条件才是欧拉图

  • 图弱联通

  • 只有两个节点出度和入度相差一,其他节点正常

(正常欧拉图所有节点入度等于出度

若删去的边 ( u , v ) (u,v) (u,v) 是非树边,由于树边是每个点最后离开的边 ( u , v ) (u,v) (u,v) 之间的树边一定还没有被删去,则 u u u v v v 之间可以直接通过树边形成弱连通;

若删去的边是树边,则删去后 u u u 与剩下的图完全断开,相当于删去了一条链末端的一条边,剩余边仍然弱连通。

所以删掉一条边后剩下的图仍然有欧拉路径.

每个边所在的顺序都是合法且不重复的欧拉路径

P5807 【模板】BEST 定理 | Which Dreamed It

【模板】BEST 定理 | Which Dreamed It

题目描述

n n n 个房间,每个房间有若干把钥匙能够打开特定房间的门。

最初你在房间 1 1 1。每当你到达一个房间,你可以选择该房间的一把钥匙,前往该钥匙对应的房间,并将该钥匙丢到垃圾桶中。

你希望最终回到房间 1 1 1,且垃圾桶中有所有的钥匙。

你需要求出方案数,答案对 1 0 6 + 3 10^6 + 3 106+3 取模。两组方案不同,当且仅当使用钥匙的顺序不同。

注意,每把钥匙都是不同的。

原 BZOJ3659。

输入格式

本题有多组数据。

第一行一个整数 T T T,表示数据组数。

对于每组数据:

第一行一个整数 n n n

接下来 n n n 行,第 i i i 行描述房间 i i i

首先一个数 s s s,表示这个房间的钥匙数目,接下来 s s s 个数,分别描述每把钥匙能够打开的房间的门。

输出格式

对于每组数据,一行一个整数,表示答案对 1 0 6 + 3 10^6+3 106+3 取模后的值。

样例 #1

样例输入 #1

2
1
0
2
1 1
1 2

样例输出 #1

1
0

提示

【样例说明】

在第一组样例中,没有钥匙,则方案数为 1 1 1

在第二组样例中,你不可能使用第二个房间的钥匙,所以方案数为 0 0 0

【数据范围】

对于 50 % 50\% 50% 的数据, n ≤ 4 n \le 4 n4 ∑ s ≤ 30 \sum s \le 30 s30

对于 100 % 100\% 100% 的数据, 1 ≤ T ≤ 15 1 \le T \le 15 1T15 1 ≤ n ≤ 100 1 \le n \le 100 1n100 0 ≤ ∑ s ≤ 3141592 0 \le \sum s \le 3141592 0s3141592

2021/5/14 加强 by SSerxhs&滑大稽

//2024.8.23
//by white_ice
//【模板】BESt 定理 | Which kdreamed kit | mod5807
//model
#include<bits/stdc++.h> 
//#include"need.cpp"
using namespace std;
#define itn long long 
#define int long long
constexpr int oo = 110;
constexpr int op = 500010;
constexpr int mod = 1000003;
int t;int n;
int ki[op];int fa[op];
itn res;itn fac[op];itn deg[op];
itn kd[oo][oo];itn kk[oo][oo];itn ka[oo][oo];
__inline itn Gauss(){
    itn ans = 1;
    for (int i=1;i<n;i++){
        for (int j=i+1;j<n;j++){
            while(kk[j][i]){
                itn t = kk[i][i]/kk[j][i];
                for(int k=i;k<n;k++)
                    kk[i][k] = (kk[i][k]-t*kk[j][k])%mod;
                swap(kk[i], kk[j]),ans=(-ans%mod+mod)%mod;
            }
        }
		if (kk[i][i]) (ans *= kk[i][i])%=mod;
    }
    return (ans % mod + mod) % mod;
}
__inline void clear(){
    memset(kk,0,sizeof(kk));
    memset(ka,0,sizeof(ka));
    memset(kd,0,sizeof(kd));
    memset(ki,0,sizeof(ki));
	for (int i=1;i<=n;i++)fa[i] = i;
}
__inline int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
main(void){
    //fre();
    cin.tie(0)->sync_with_stdio(0);
    cin >> t;fac[0] = 1;
    for (itn i=1;i<=500000;i++)
        fac[i] = fac[i-1]*i%mod;
    while (t --){
        cin >> n;clear();
        for (int i=1;i<=n;i++){
            int k, s;cin >> s;deg[i] = s;
            for (int j=1;j<=s;j++){
                cin >> k;ka[i][k]++,kd[k][k]++,ki[k]++;
                if (find(i) != find(k))
                    fa[find(i)]=find(k);
            }
        }
        for (int i=1;i<=n;i++)
            for (int j=1;j<=n;++j)
                kk[i][j] = ((kd[i][j]-ka[i][j])%mod+mod)%mod;
        for (int i=1;i<=n;i++)
            if (ki[i] != deg[i])  goto x1;
        for (int i=1;i<=n;i++)
            if (find(i)!=find(1)&&deg[i]) goto x1;
        res = deg[1]*Gauss()%mod;
        for (int i = 1;i <= n;i++)
            if (deg[i]) (res *= fac[deg[i]-1])%=mod;
        for (int i = 2;i <= n;i++) 
            if (find(i) == find(1)) goto x2;
        cout << fac[deg[1]] << '\n';continue;
        x1: puts("0");continue;
        x2: cout << res << '\n';
    }
    exit(0);
}

[AGC051D] C4

[AGC051D] C4

题面翻译

有一张 4 4 4 个点 4 4 4 条边的简单无向连通图,点的编号分别为 1 , 2 , 3 , 4 1,2,3,4 1,2,3,4 ,边分别连接着 $e1:(1,2),e2:(2,3),e3:(3,4),e4:(4,1) $。

给定 4 4 4 个数 v 1 , v 2 , v 3 , v 4 v_1,v_2,v_3,v_4 v1,v2,v3,v4 求满足以下条件的路径数量:

1 1 1 号点出发并到 1 1 1 号点结束,且经过第 i i i 条边 e i e_i ei 恰好 v i v_i vi 次。

你需要输出路径数对 998244353 998244353 998244353 取模的结果。

v 1 , v 2 , v 3 , v 4 ≤ 5 × 1 0 5 v_1,v_2,v_3,v_4 \le 5 \times 10^5 v1,v2,v3,v45×105

题目描述

以下の無向グラフにおいて、$ S $ から $ S $ へのウォークであって辺 $ ST $, $ TU $, $ UV $, $ VS $ をそれぞれ $ a $, $ b $, $ c $, $ d $ 回通るもの (向きは不問) の数を $ 998,244,353 $ で割った余りを求めてください。

输入格式

入力は標準入力から以下の形式で与えられる。

$ a $ $ b $ $ c $ $ d $

输出格式

答えを出力せよ。

样例 #1

样例输入 #1

2 2 2 2

样例输出 #1

10

样例 #2

样例输入 #2

1 2 3 4

样例输出 #2

0

样例 #3

样例输入 #3

470000 480000 490000 500000

样例输出 #3

712808431

提示

注記

$ S $ から $ S $ へのウォークとは、頂点の列 $ v_0\ =\ S,\ v_1,\ \ldots,\ v_k\ =\ S $ であって、各 $ i\ (0\ \leq\ i\ <\ k) $ について $ v_i $ と $ v_{i+1} $ を結ぶ辺があるものをいいます。 $ 2 $ つのウォークは、列として異なるときに異なるとみなされます。

制約

  • $ 1\ \leq\ a,\ b,\ c,\ d\ \leq\ 500,000 $
  • 入力中の全ての値は整数である。

Sample Explanation 1

条件を満たすウォークは $ 10 $ 個あり、その一例は $ S $ $ \rightarrow $ $ T $ $ \rightarrow $ $ U $ $ \rightarrow $ $ V $ $ \rightarrow $ $ U $ $ \rightarrow $ $ T $ $ \rightarrow $ $ S $ $ \rightarrow $ $ V $ $ \rightarrow $ $ S $ です。

//2024.8.23
//by white_ice
//[AGC051D] C4 | AT_agc051_d
//BEST定理
#include<bits/stdc++.h>
//#include"need.cpp"
using namespace std;
#define itn long long 
#define int long long 
constexpr int mod = 998244353;
constexpr int oo = 1000006;
int fac[oo],ifac[oo];itn a,b,c,d;
void init(){
	fac[0]=fac[1]=ifac[1]=ifac[0]=1;
	for(int i=2;i<=600000;++i)ifac[i]=(mod-mod/i)*ifac[mod%i]%mod;
	for(int i=2;i<=600000;++i)fac[i]=fac[i-1]*i%mod,ifac[i]=ifac[i]*ifac[i-1]%mod;
}
int check(){
	if((a&1)!=(b&1))return 1;
	if((b&1)!=(c&1))return 1;
	if((c&1)!=(d&1))return 1;
	return 0;
}
int check2(int i,int j,int k){
	if(i<0||i>b)return 1;
	if(j<0||j>c)return 1;
	if(k<0||k>d)return 1;
	return 0;
}
__inline int get(int st,int tu,int uv,int vs){int sv=d-vs,ut=b-tu,vu=c-uv;
return (st*tu*uv%mod+sv*st*tu%mod+sv*vu*ut%mod+sv*vu*st%mod)%mod;}
main(void){
    //fre();
    cin.tie(0)->sync_with_stdio(0);
    cin >> a >> b >> c >> d;
	init();
	if(check()){cout<<0;return 0;}
	int out=0;
	for(int xa=0;xa<=a;++xa){
		int xb=xa+(b-a)/2,xc=xb+(c-b)/2,xd=xc+(d-c)/2;
		if(check2(xb,xc,xd))continue;
		int tmps=d+xa-xd;itn tmpt=a+xb-xa;
        itn tmpu=b+xc-xb;itn tmpv=c+xd-xc;
		int tmp=(fac[tmps-1]*fac[tmpt-1]%mod)*(fac[tmpu-1]*fac[tmpv-1]%mod)%mod;
		int itmp1=(ifac[xa]*ifac[a-xa]%mod)*(ifac[xb]*ifac[b-xb]%mod)%mod;
		int itmp2=(ifac[xc]*ifac[c-xc]%mod)*(ifac[xd]*ifac[d-xd]%mod)%mod;
		int itmp=itmp1*itmp2%mod;
		out=(out+get(xa,xb,xc,xd)*tmps%mod*tmp%mod*itmp%mod)%mod;
	}
	cout << out << flush;
    exit (0);
}

首先想到可以拆边,将一条边,拆成很多条,

题目就可以转化,即:求从S出发的欧拉路数

显然应当使用BEST定理求解,但是BEST有局限性:要求图有向

所以我们要将无向图转化为有向图处理

对于任意一组边,比如 S ⟷ T S \longleftrightarrow T ST,共有a条,

我们考虑将其拆成 x a x_a xa S → T S \rightarrow T ST a − x a a-x_a axa T → S T\rightarrow S TS的边

因为是欧拉回路的缘故,所以我们的拆分并不那么自由要有一定的限制

欧拉回路中,每个节点出度等于入度

所以。。。。
x a + b − x b = a − x a + x b ⇒ x b = x a + b − a 2 x_a+b-x_b = a-x_a+x_b \Rightarrow\\ x_b = x_a+\frac{b-a}{2} xa+bxb=axa+xbxb=xa+2ba
同理,另外的 x c , x d x_c,x_d xc,xd也可以这么推出

所以欧拉图数量 e c ( V ) ec(V) ec(V)就可以求出来了

但是对于这道题,还要加上一些东西:

  1. 题目中要求了起点,所以要乘上S的出度 d e g s deg_s degs
  2. BEST定理中每条边都不同,但是在此题中,重边相同,所以答案要除以 ∏ e ∈ { a , b , c , d } x e ! ( e − x e ) ! \prod_{e\in \{a,b,c,d\}}x_e!(e-x_e)! e{a,b,c,d}xe!(exe)!

答案就是:
e c ( V ) × d e g s ∏ e ∈ { a , b , c , d } x e ! ( e − x e ) ! \frac{ec(V)\times deg_s}{\prod_{e\in \{a,b,c,d\}}x_e!(e-x_e)!} e{a,b,c,d}xe!(exe)!ec(V)×degs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值