YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)

本文详细介绍了HS-FPN结构,一种针对白细胞检测的网络设计,用于解决多尺度问题。HS-FPN包含特征选择模块和特征融合模块,通过通道注意力和维度匹配筛选特征,使用选择性特征融合增强模型表现。文章提供了核心代码修改指导和yaml文件,适合对YOLOv8进行轻量化改进的研究者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是最近这几天最新发布的改进机制MFDS-DETR提出的一种HS-FPN结构,其是一种为白细胞检测设计的网络结构,主要用于解决白细胞数据集中的多尺度挑战。它的基本原理包括两个关键部分:特征选择模块特征融合模块在本文的下面均会有讲解,这个结构是非常新颖的,代码仅仅更新了三天。其可以起到特征选择的作用,非常适合轻量化的读者来使用,其存在二次创新和多次创新的机会,在近期内我会对其进行更加轻量化和精度更高的二次创新,利用该结构参数量下降至197W,计算量降低至7.0GFLOPs,本文结构为我独家复现,全网目前无第二份大家可以抓紧使用。

欢迎大家订阅我的专栏一起学习YOLO! 

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备  

目录

一、本文介绍

二、HS-FPN原理

2.1  HS-FPN的基本原理

2.2  SSF模块

三、HS-FPN的核心代码

四、手把手教你添加HS-FPN

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

4.5 修改五

五、HS-FPN的yaml文件和运行记录

5.1 HS-FPN的yaml文件一

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值