简介
为提高控制系统的性能,减少人工调参时间,增强系统的适应性和稳定性, 本文针对离散时间线性系统和非线性非仿射系统,分别提出了PID控制器参数 自整定的优化方法。所提方法不需要进行闭环实验,计算简单,具有较强的鲁 棒性和自适应性。理论证明和仿真验证了方法的有效性和正确性。
意义
PID 控制器参数整定旨在确保控制系统能在各种工作条件下实现良好的控制 性能。首先,不同的控制对象具有不同的动态特性,如时间常数、非线性等, 这些特性要求PID参数必须针对具体对象进行优化,以实现快速、准确的控制。 其次,工作环境的变化,如温度、压力和负载的波动,也会影响系统性能,因 此需要通过调整PID参数来适应这些变化,保证控制系统的稳定性和鲁棒性。 进一步地,系统的设计和运行目标可能会随时间发生变化,例如,提高生产效 率、降低能耗或满足更严格的安全标准,这些目标的变化直接影响PID控制策 略的设定。在这种情况下,参数整定成为调整控制系统以满足新目标的有效手 段。此外,随着技术进步和新材料的应用,原有的控制系统可能需要适应新 的操作条件或控制新的过程,这也要求对PID参数进行整定。从更深层次看, PID参数的优化整定不仅关乎系统性能的提升,还关系到系统运行的经济性和环 境友好性,优化后的参数可以减少能耗和物料浪费,降低生产成本,同时减少 对环境的影响。例如,在化工过程控制中,精确的温度控制不仅保证了产品质 量,还避免了能源的过度消耗和原料的浪费。 综上所述,PID控制器参数的整定是一个复杂但至关重要的过程,它需要综 合考虑控制对象的特性、系统目标的调整以及环境因素。通过对参数进行整 定优化,PID控制器能够对各种外部干扰和内部参数变化做出快速且适当的响应, 可以提高控制系统的性能,实现更高的生产效率和更好的资源利用率。在自动 化控制领域,适当的参数整定是实现先进控制策略、提升系统智能化水平的关 键步骤。此外,有效的参数整定还能增强系统的鲁棒性,使其在面对模型不 确定性和外部扰动时,仍能保持良好的控制效果,这对于确保复杂工业过程的 安全稳定运行具有至关重要的作用。
PID参数整定方法
Ziegler-Nichols 方法
Ziegler-Nichols 方法是最早期也是最著名的PID参数整定方法之一,最早由 John G. Ziegler 和 Nathaniel B. Nichols 在 20 世纪 40 年代提出。该方法基于系统 的开环响应特性来确定PID控制器的参数,主要分为开环方法和闭环方法两种 形式。开环方法依赖于系统对阶跃输入的响应,通过测定系统的延迟时间和时 间常数来设置PID参数。这种方法简单直观,但需要系统能够进行开环测 试,且对于某些类型的系统不适用。闭环方法,又称为“最终值法”,通过将 系统设定在闭环下,调整增益至系统开始出现持续振荡的临界点,记录此时的 增益和振荡周期。基于这两个值,可以依据Ziegler-Nichols给出的公式计算出 PID 三个参数的精确值。Ziegler-Nichols方法操作简单,易于实施,特别适合初 步快速整定PID参数。然而,这种方法也有较大的局限性,整定出的参数可能 会导致系统过度振荡,特别是对于过程动态特性变化大或非线性强烈的系统, Ziegler-Nichols 方法整定的参数可能不是最优的。此外,这种方法需要在系 统能够安全进行开环测试或在接受一定程度振荡的前提下进行,这在某些敏感 或安全要求高的应用场合可能不适用。尽管存在这些局限,Ziegler-Nichols方法 仍然是学习和应用PID控制中一个重要的起点,对于许多工程师而言,它提供 了一个实用且直观的参数整定工具。
Cohen-Coon方法
Cohen-Coon 方法是针对具有一阶加时间延迟的过程模型设计的一种经典 PID参数整定方法。相对于Ziegler-Nichols方法而言,Cohen-Coon提供了更为精 细的参数调整策略,特别适用于过程控制应用。该方法首先通过对系统的开环 响应进行测试,测量出过程的时间延迟和时间常数,然后根据这些测量值来计 算PID控制器的参数。Cohen-Coon方法的核心优势在于其能够考虑到过程的动 态特性,因而在许多情况下能够提供比Ziegler-Nichols方法更优的控制性能。通 过精确地调整PID参数,Cohen-Coon方法能够显著改善系统的过渡响应,减少 超调,并缩短调节时间[54-58]。尽管如此,Cohen-Coon方法也有其局限性,特别 是在处理高阶系统或非线性系统时,可能需要进一步的调整和优化。
基于神经网络的PID参数整定方法
基于神经网络(NN)的PID参数整定模型由输入层、隐藏层和输出层三部分 构成。输入层包括误差信号、误差变化率以及误差积分,它们对应于PID控制器的P、D、I部分。隐藏层的神经元数量和层数需要根据问题的复杂性来确定。 一般来说,更复杂的控制任务可能需要更多的神经元和层数。输出层的神经元 数量通常等于控制器参数的数量,对于PID控制器来说,通常有三个输出:比 例增益 p K、积分增益 i K和微分增益 d K。学习率、动量项和迭代次数是神经网 络三个重要的指标,学习率决定了网络权重更新的步长。学习率过小会导致学 习过程缓慢,反之将导致学习过程不稳定。动量项在克服局部最小值问题和加 速学习速度方面具有显著作用。迭代次数直接影响网络训练的进行,通常需要 多次迭代才能达到最优解的收敛。学习率和动量项可以通过交叉验证来选择, 在实际应用中,神经网络的设计和参数选择需要根据具体任务进行调整和优化。
在自适应控制领域,基于神经网络的PID参数整定方法利用神经网络的学 习能力来自动调整PID控制器的参数,以适应控制系统在不同工作条件下的性 能要求。这种方法通过神经网络对系统动态行为的模拟和预测,实现了对PID 参数的实时优化,极大地提高了控制系统的适应性和鲁棒性。前馈神经网络和 递归神经网络在非线性系统建模和识别方面表现出色,因此在PID参数的自适 应整定中得到广泛应用。通过训练神经网络学习系统的输入输出关系,可以实 现对PID控制器参数的在线调整,从而优化控制效果。一般而言,网络的输入 是系统的误差信号及其导数,输出是PID控制器的参数。通过反向传播算法或 其它优化算法调整网络权重,神经网络能够根据控制性能指标(如超调、稳定时 间等)自动优化PID控制器的参数。