JDK1.8中关于HashMap的红黑树讲解

一,首先需要了解以下几个问题:

1.为什么要引入红黑数(特殊的平衡二叉树)数据结构

2.引入红黑树HashMap做了哪些改造

3.  红黑树的特性

4.红黑树的具体实现方式

二,逐一解释以上三个问题

1.1 为什么要引入红黑数(特殊的平衡二叉树)数据结构

由于在JDK1.7之前,HashMap的数据结构为:数组 + 链表。数组相当于日常中永到的数据结构Array. 用来确定key-value对所存储的位置。那么为什么又有链表结构?这个要从HashMap散列值生成来讲起。这个具体细节可参考相关文档即可。如果按照Hash值,通过Hash函数来确认桶位,会存在一个问题,就是hash冲突的问题,也就是不同的key可能会产生不一样的hash值。

static final int hash(Object key) {
    int h;
    // 两个值做异或,最终相同的可能性很大
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

所以引入了链表来存储hash值一样的key-value. 如果按照链表的方式存储,随着节点的增加数据会越来越多,这会导致查询节点的时间复杂度会逐渐增加,平均时间复杂度O(n)。 为了提高查询效率,故在JDK1.8中引入了改进方法红黑树。此数据结构的平均查询效率为O(log n) 。

1.2 引入红黑树HashMap做了哪些改造

当链表节点长度超过8时,将链表转换为二叉树。


final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K, V>[] tab;
    Node<K, V> p;
    int n, i;
    if ((tab = table) == null || (n = tab.length) == 0) {
        n = (tab = resize()).length;
    }
    if ((p = tab[i = (n - 1) & hash]) == null) {
        tab[i] = newNode(hash, key, value, null);
    } else {
        Node<K, V> e;
        K k;
        if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k)))) {
            e = p;
        } else if (p instanceof TreeNode) {
            e = ((TreeNode<K, V>) p).putTreeVal(this, tab, hash, key, value);
        } else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    // 先将新节点插入到 p.next
                    p.next = newNode(hash, key, value, null);
                    // 如果长度链表长度超过8,则转换为二叉树
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st

                    /**
                     * hash 需要转化二叉树的hash值
                     */
                    // 转化为二叉树
                    {
                        treeifyBin(tab, hash);
                    }
                    break;
                }
                // 存在hash和key都一样的情况,则说明已经存在。直接跳出循环
                if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k)))) {
                    break;
                }
                // 继续下一次循环
                p = e;
            }
        }

        //
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null) {
                e.value = value;
            }
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    if (++size > threshold) {
        resize();
    }
    afterNodeInsertion(evict);
    return null;
}

1.3  红黑树的特性

1.3.1 什么时红黑树

红黑树(Red Black Tree) 是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。《引自百度百科》

1.3.2 红黑树的特点

红黑树和AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。它虽然是复杂的,但它的最坏情况运行时间也是非常良好的,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除,这里的n 是树中元素的数目。

1.3.3 红黑树特点

性质1:节点是红色或黑色。
性质2:根节点是黑色。
性质3:每个叶节点(NIL节点,空节点)是黑色的。
性质4:每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
性质5:从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

//数据结构
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
	TreeNode<K,V> parent;  // red-black tree links
	TreeNode<K,V> left;
	TreeNode<K,V> right;
	TreeNode<K,V> prev;    // needed to unlink next upon deletion
	boolean red; //红黑节点标识
	TreeNode(int hash, K key, V val, Node<K,V> next) {
		super(hash, key, val, next);
	}
	....
}

1.4 红黑树的具体实现方式(重点)

在JDK1.8 HashMap中,转换为红黑树大致分为三个步骤。

第一阶段:将链表转化为二叉树

第二阶段:验证是否满足红黑树的五大特征

第三阶段:对二叉树进行左右旋转操作

1.4.1  将链表转化为二叉树

final void treeifyBin(Node<K,V>[] tab, int hash) {
	int n, index; Node<K,V> e;
	if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
		resize();
	// 重新计算 hash段位,及table的索引位,第一个节点
	else if ((e = tab[index = (n - 1) & hash]) != null) {

		/************ 双向链表 start***************/
		// hd头节点, tl尾节点
		TreeNode<K,V> hd = null, tl = null;
		do {
			// 循环所有节点
			TreeNode<K,V> p = replacementTreeNode(e, null);
			if (tl == null)
				hd = p;
			else {
				p.prev = tl;
				tl.next = p;
			}
			tl = p;
		} while ((e = e.next) != null);// 循环下一个节点
		/************ 双向链表 end***************/


		// 前面仅仅转换为双向链表,treeify才是转换红黑树的处理方法入口 
		// 第一个节点赋值为头节点,也就是根节点
		if ((tab[index] = hd) != null)
			// 将二叉树转换为红黑树
			hd.treeify(tab);
	}
}

1.4.2 验证是否满足红黑树的五大特征 

/**
 * 调用这个方法之前 也就是一个双向链表
 * 初始进入值为 this头节点
 * 将双向链表转换为红黑树
 * 目标:查询 root 节点
 * @param tab
 */
final void treeify(Node<K,V>[] tab) {
	TreeNode<K,V> root = null;//root节点
	for (TreeNode<K,V> x = this, next; x != null; x = next) {
		next = (TreeNode<K,V>)x.next; //next 下一个节点
		x.left = x.right = null;//设置左右节点为空
		if (root == null) {//首次循环 root == null
			x.parent = null; // 将根节点的父节点设置位空
			x.red = false; // 将根节点设置为 black
			root = x; //将x 设置为根节点
		}
		else {// 非根节点
			K k = x.key;// 获取当前循环节点key
			int h = x.hash;// 获取当前节点hash
			Class<?> kc = null;
			// 从根节点开始验证
			for (TreeNode<K,V> p = root;;) {
				int dir, ph;
				K pk = p.key;// 每个节点的key
				if ((ph = p.hash) > h) //每个节点的hash 与 外层循环的x.hash做比较
					dir = -1;// <0 ,沿左路径查找 -1
				else if (ph < h)// >0, 沿右路径查找 1
					dir = 1;

				// 如果存在比较对象,则根据比较对象定义的comparable进行比较
				// 比较之后返回查询节点路径(左或右)
				else if ((kc == null &&
						(kc = comparableClassFor(k)) == null) ||
						(dir = compareComparables(kc, k, pk)) == 0)
					dir = tieBreakOrder(k, pk);

				// p设置位x的父节点 xp
				TreeNode<K,V> xp = p;

				// 如果父节点的左节点或右节点为空时,才进行插入操作
				if ((p = (dir <= 0) ? p.left : p.right) == null) {
					// 将px设置为x的父节点
					x.parent = xp;
					if (dir <= 0)
						xp.left = x;
					else
						xp.right = x;
					// 将二叉树转换位红黑树-正式转换红黑树
					root = balanceInsertion(root, x);
					break;
				}
			}
		}
	}
	moveRootToFront(tab, root);
}

1.4.3 对二叉树进行左右旋转操作

/**
 * 转换二叉树为红黑树
 * @param root 根节点
 * @param x 执行的节点
 * @param <K>
 * @param <V>
 * @return
 */
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
											TreeNode<K,V> x) {
	// 默认x节点为红色节点
	x.red = true;

	/**
	 * xp:   x的父节点
	 * xpp:  x父节点的父节点
	 * xppl: x父节点的父节点左子节点
	 * xppr: x父节点的父节点右子节点
	 */
	for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {

		// xp = x.parent
		// 如果x存在父节点,则说明目前只有一个节点,即root.根据
		// 红黑树的五大特征,根节点只能为黑色节点
		if ((xp = x.parent) == null) {
			x.red = false;
			return x;
		}

		//xpp = xp.parent
		//直接查询的是根节点
		else if (!xp.red || (xpp = xp.parent) == null)
			return root;

		// xppl = xpp.left
		// x的父节点时左节点时
		if (xp == (xppl = xpp.left)) {

			// 验证是否需要旋转
			// xppr = xpp.right 存在右节点 且 右节点为红色
			if ((xppr = xpp.right) != null && xppr.red) {
				xppr.red = false; // xppr 设置位black
				xp.red = false; // xp 设置位black
				xpp.red = true; // xpp 设置位red
				x = xpp;// 将x赋值为父节点的父节点
			}
			else {
				if (x == xp.right) {

					// 左旋转
					root = rotateLeft(root, x = xp);
					xpp = (xp = x.parent) == null ? null : xp.parent;
				}
				if (xp != null) {
					xp.red = false;
					if (xpp != null) {
						xpp.red = true;

						// 右旋转
						root = rotateRight(root, xpp);
					}
				}
			}
		}

		// x的父节点右节点时
		else {

			// 验证是否需要旋转
			if (xppl != null && xppl.red) {
				xppl.red = false;
				xp.red = false;
				xpp.red = true;
				x = xpp;
			}
			else {
				if (x == xp.left) {

					// 右旋转
					root = rotateRight(root, x = xp);
					xpp = (xp = x.parent) == null ? null : xp.parent;
				}
				if (xp != null) {
					xp.red = false;
					if (xpp != null) {
						xpp.red = true;

						// 左旋转
						root = rotateLeft(root, xpp);
					}
				}
			}
		}
	}
}

1.4.3.1 左旋转

/**
 * 左旋转
 * @param root
 * @param p
 * @param <K>
 * @param <V>
 * @return
 */
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
									  TreeNode<K,V> p) {
	TreeNode<K,V> r, pp, rl;
	if (p != null && (r = p.right) != null) {
		if ((rl = p.right = r.left) != null)
			rl.parent = p;
		if ((pp = r.parent = p.parent) == null)
			(root = r).red = false;
		else if (pp.left == p)
			pp.left = r;
		else
			pp.right = r;
		r.left = p;
		p.parent = r;
	}
	return root;
}

1.4.3.2 右旋转

/**
 * 右旋转
 * @param root
 * @param p
 * @param <K>
 * @param <V>
 * @return
 */
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,

									   TreeNode<K,V> p) {

	// l: p的左节点  pp:p的父节点 lr:左右节点
	TreeNode<K,V> l, pp, lr;

	// 传入参数
	// root: 默认调用此方法前指定的root节点
	// p: root的父节点
	if (p != null && (l = p.left) != null) {

		if ((lr = p.left = l.right) != null)
			lr.parent = p;

		// 判断p的父节点是否为空
		if ((pp = l.parent = p.parent) == null)
			// 调整root的值
			(root = l).red = false;


		else if (pp.right == p)
			pp.right = l;
		else
			pp.left = l;

		// 将p调整为 root 节点的右节点
		l.right = p;

		//将l调整为p的parent
		p.parent = l;
	}

	return root;
}

转自 https://www.cnblogs.com/FCWORLD/articles/8504383.html

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页