AI绘图——模型介绍(1)

在这里插入图片描述

2dn_1	                                  动漫模型
3Guofeng3_v32Light	                      中国、国风模型,感觉上偏3D国漫
anything-v4.5-pruned	                  说是里面东西很多很杂
CamelliaMix_2.5D	                      2.5D模型
camelliamix_v20	                          动漫模型
chilloutmix_NiPrunedFp32Fix	              真人模型,这个首要针对亚洲人训练的,热度比较高
Dalcefo_v4_Painting	                      动漫模型
dalcefoPainting_3rd	                      动漫模型,色彩比较淡
dalcefoRealistic_v2	                      真人模型
dreamshaper_4BakedVae	                  动漫模型,有点3D的感觉
grapefruitHentaiModel_grapefruitv41	      动漫模型,这个热度高 
meinamix_meinaV8	                      动漫复合模型 
openjourney-v4	                          动漫模型,有些3D的意思 
povSkinTexture_povSkinTextureDreamlike	  真人模型,很少用
realisticVisionV13_v13	                  真人模型,很少用
realisticVisionV20_v20	                  真人模型,很少用

参数

masterpiece, best quality, high quality, game cg, white hair, red
eyes,school uniform, cloudy sky, full body, grass,looking at viewer,
wariza, twintails,front,silver hair, sit, best shadow, cinematic
light,
描绘了一个女孩,白色的头发、赤色的眼睛、校服、草地上坐着。

2dn_1

请添加图片描述

3Guofeng3_v32Light

请添加图片描述

anything-v4.5-pruned

请添加图片描述

CamelliaMix_2.5D

请添加图片描述

camelliamix_v20

请添加图片描述

chilloutmix_NiPrunedFp32Fix

请添加图片描述

Dalcefo_v4_Painting

请添加图片描述

dalcefoPainting_3rd

请添加图片描述

dalcefoRealistic_v2

请添加图片描述

dreamshaper_4BakedVae

请添加图片描述

grapefruitHentaiModel_grapefruitv41

请添加图片描述

meinamix_meinaV8

请添加图片描述

openjourney-v4

请添加图片描述

povSkinTexture_povSkinTextureDreamlike

请添加图片描述

realisticVisionV13_v13

请添加图片描述

realisticVisionV20_v20

请添加图片描述

### 使用 Python AI 绘画模型进行图像生成 #### 1. 环境准备 在使用 Python 的 AI 绘画模型之前,需要安装必要的依赖库。这些库通常包括 TensorFlow 或 PyTorch,以及一些辅助工具如 NumPy 和 PIL (Pillow)[^1]。 以下是环境搭建的代码示例: ```bash pip install tensorflow numpy pillow ``` 对于更复杂的模型,可能还需要额外安装特定框架的支持包,例如 `torchvision` 对于基于 PyTorch 的模型[^2]。 --- #### 2. 加载预训练模型 大多数 AI 绘画模型都依赖于已有的预训练权重文件。可以通过加载官方发布的模型来快速上手。以下是一个简单的例子: ```python import tensorflow as tf from tensorflow.keras.models import load_model # 加载预训练模型 model_path = 'path_to_pretrained_model.h5' model = load_model(model_path) print("Model loaded successfully!") ``` 如果使用的是 PyTorch,则可以采用类似的逻辑加载模型: ```python import torch from torchvision import models # 加载预训练模型 model = models.resnet50(pretrained=True) model.eval() print("PyTorch model loaded and set to evaluation mode.") ``` 上述方法展示了如何通过标准接口加载常见的神经网络架构并将其设置为评估模式。 --- #### 3. 数据输入与处理 AI 绘画模型通常接受标准化后的图片作为输入数据。因此,在实际运行前需对原始图片进行预处理操作,比如调整大小、归一化像素值等。 下面是一段用于读取和转换图片的数据管道代码片段: ```python from PIL import Image import numpy as np def preprocess_image(image_path, target_size=(256, 256)): image = Image.open(image_path).resize(target_size) image_array = np.array(image) / 255.0 # 归一化至 [0, 1] return image_array.reshape(1, *target_size, 3) # 调整形状以匹配模型需求 input_data = preprocess_image('example.jpg') ``` 此函数会将任意尺寸的 JPG 文件转化为适合喂入深度学习模型的形式。 --- #### 4. 图像生成过程 一旦完成了前期准备工作之后就可以调用模型来进行预测或者生成新的艺术风格的作品了。这里给出一段基本流程演示: ```python output_predictions = model.predict(input_data) # 将输出重新映射回 RGB 值范围 generated_image = output_predictions[0].clip(0, 1) * 255 generated_image = generated_image.astype(np.uint8) # 展示生成的结果 Image.fromarray(generated_image).show() ``` 这段脚本执行完毕后将会弹窗显示由算法创造出来的全新视觉效果。 --- #### 5. 多线程优化性能 为了进一步提升效率特别是在批量生产场景下,可考虑引入并发机制——即利用多线程技术同时处理多个请求。具体实现方式如下所示: ```python import threading from queue import Queue class Worker(threading.Thread): def __init__(self, task_queue): super().__init__() self.task_queue = task_queue def run(self): while True: try: input_file, output_dir = self.task_queue.get(timeout=1) processed_img = preprocess_image(input_file) result = model.predict(processed_img) save_result(result, f"{output_dir}/out_{Path(input_file).stem}.png") except Exception as e: break def start_workers(num_threads, tasks): q = Queue(maxsize=num_threads*2) workers = [] for _ in range(num_threads): worker = Worker(q) worker.daemon = True worker.start() workers.append(worker) for t in tasks: q.put(t) for w in workers: w.join() ``` 以上代码定义了一个工作类及其管理器,能够有效分配资源给各个子进程从而加快整体速度。 --- #### 总结 综上所述,借助 Python 及其生态系统中的强大组件,开发者不仅可以轻松构建起自己的个性化绘图解决方案,还能通过对现有开源项目的二次开发不断探索更多可能性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值