K均值用于图像分割

本文介绍了K均值聚类算法在图像分割中的使用。K均值是一种基于距离的聚类方法,通过不断迭代寻找最优聚类中心,将图像像素分配到相应的类别中,实现图像的分割。代码示例展示了如何用C++实现K均值算法进行图像二值化处理。
摘要由CSDN通过智能技术生成

K均值聚类用于图像分割


       聚类:将抽象对象的集合分成由多个相似的对象组成的多个子类的过程,常用聚类方法有:分裂法,层次法,基于密度的方法,基于网格的方法,基于模型的方法,K均值法。其中K均值法是一种基于距离的分裂法。

K均值算法是非常常用的一种聚类算法,用于将给定的样本集分成指定数目的聚类。具体算法如下:

·      为每个聚类确定一个初始的聚类中心,这样k个聚类存在k个聚类中心

·      将样本集中的每一个样本按照最小距离原则 分配到k个聚类中的某一个

·      使用每个聚类中所有样本的均值作为新的聚类中心

·      如果聚类中心有变化则重复2、3步直到聚类中心不再变化为止

·      最后得到的k个聚类中心就是聚类的结果

K均值算法是一种贪心算法,因而不一定能得到最优化结果,不过它是必定收敛的。

BOOLCDibImage::KmeansDIB(LPSTRlpDIBBits, LONG lWidth, LONG lHeight)

{

LPSTRlpSrc;    // 指向源图像的指针 

LPSTRlpDst;     // 指向缓存图像的指针 

LPSTR lpNewDIBBits;   // 指向缓存DIB图像的指针

HLOCAL hNewDIBBits;

LONG lLineBytes;   // 图像每行的字节数

long i,j,k,order =0,temp=255;      // 循环变量

unsigned char pixel

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值