背景建模方法论文总结

本文总结了多种背景建模方法,包括单高斯模型、混合高斯模型(GMM)、GMM改进、LBP特征、SILTP纹理表示、独立成分分析(ICA)、深度帧间差分、码本模型(CodeBook)、样本一致性算法(SACON)和ViBe算法。这些方法各有优缺点,例如GMM解决了单高斯模型对运动目标的处理,但计算复杂且对光照敏感;ViBe算法计算量小速度快,对相机抖动有一定鲁棒性。文章探讨了各种方法在运动检测精度、时间复杂性和空间复杂性方面的表现,为实际应用提供了参考。
摘要由CSDN通过智能技术生成

文章名称:Real-tine tracking of the human body

年份:1997

作者:Christopher Richard Wren

算法名称:单高斯背景建模

简单描述:

    将每个像素的可能取值看做是一个高斯分布

 

文章名称:Adaptive Background Mixture Models for Real-Time Tracking

年份:1999

第一作者:Stauffer C

算法名称:混合高斯背景模型(GMM)

简单描述:

混合高斯模型使用K(基本为3到5个) 个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。每个高斯模型,他主要是有方差和均值两个参数决定,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。但是计算复杂对光照敏感。

 

文章名称:An Improved Adaptive Background Mixture Model for Realtime Tracking with Shadow Detection

年份:2002

第一作者:Kaewtrakulpong P

算法名称:GMM改进

简单描述:

    OpenCV实现的是这篇文章。他的创新点就是用EM初始化每个高斯模型的参数;传统的高斯模型存在学习速度慢,特别对于复杂的环境,并且不能区分移动的阴影和移动的目标。这篇文章提出在更新方程上做了一定的修改,在不同的阶段使用不同的方程,并且介绍了一种阴影检测的方法。

 

文章名称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值