文章名称:Real-tine tracking of the human body
年份:1997
作者:Christopher Richard Wren
算法名称:单高斯背景建模
简单描述:
将每个像素的可能取值看做是一个高斯分布
文章名称:Adaptive Background Mixture Models for Real-Time Tracking
年份:1999
第一作者:Stauffer C
算法名称:混合高斯背景模型(GMM)
简单描述:
混合高斯模型使用K(基本为3到5个) 个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。每个高斯模型,他主要是有方差和均值两个参数决定,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。但是计算复杂对光照敏感。
文章名称:An Improved Adaptive Background Mixture Model for Realtime Tracking with Shadow Detection
年份:2002
第一作者:Kaewtrakulpong P
算法名称:GMM改进
简单描述:
OpenCV实现的是这篇文章。他的创新点就是用EM初始化每个高斯模型的参数;传统的高斯模型存在学习速度慢,特别对于复杂的环境,并且不能区分移动的阴影和移动的目标。这篇文章提出在更新方程上做了一定的修改,在不同的阶段使用不同的方程,并且介绍了一种阴影检测的方法。
文章名称