ML_abstract

主要是最近所看文章摘取,细节不再累赘

1    Probability    3
    1.1    probability theory    3
    1.2    common distributions    5
    1.2.1    discrete distributions    6
    1.2.2    continuous distributions    8
2    Bayesian Perspective    13
    2.1    Introduction    13
    2.2    Simple Example    13
    2.3    The beta-binomial model    15
    2.4    The Dirichlet-multinomial model    17
    2.5    Naive Bayes classifiers    20
    2.6    Hierarchical Bayes    24
3    Linear regression    28
    3.1    Introduction    28
    3.2    Robust linear regression    29
    3.3    Shrinkage Methods    30
    3.3.1    Ridge Regression    30
    3.3.2    Lasso Regression(Sparse)    31
    3.3.3    Orthogonal Matching Pursuit (OMP)( Sparse)    32
    3.3.4    Least Angle Regression( Sparse)    32
    3.4    Bayesian linear regression    32
4    Classification    36
    4.1    QDA and LDA    37
    4.2    Logistic regression    47
    4.3    Bayesian Logistic regression    51
5    Kernel Methods    55
    5.1    SVM    55
    5.2    Gaussian Processes    55
    5.3    Relevance Vector Machines    55
6    Mixture Models and EM    55
    6.1    Mixture model    55
    6.2    EM for GMMs    57
    6.3    EM for the Student distribution    59
    6.4    EM for probit regression    61
    6.5    Theoretical basis for EM    64
    6.6    Factor analysis    66
7    Latent Linear Models    66
    7.1    PCA    66
    7.2    PPCA    66
    7.3    ICA    66
8    Variational inference    67
    8.1    Introduction    67
    8.2    The mean field method    67
    8.3    Expectation propagation    67
9    Montel Carlo Sampling    67
    9.1    Introduction    67
    9.2    Rejection sampling    67
    9.3    Importance sampling    67
    9.4    Markov chain Monte Carlo    67
    9.4.1    Gibbs sampling    67
    9.4.2    Metropolis Hastings algorithm    67
10    Graphical Models    68
    10.1    Introduction    68
    10.2    Hidden Markov model    68
    10.3    Generalizations of HMMs    68
    10.4    Markov random fields    68



weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值