LeetCode - 673. 最长递增子序列的个数

673. 最长递增子序列的个数

给定一个未排序的整数数组,找到最长递增子序列的个数。

在这里插入图片描述
解题思路: 之前做过求最长增序列的题,用DP,Dynamic Programming解,但是此题不但想求出最长序列的长度,还想知道这个长度对应的序列有多少个,这让我想起了之前做PAT题,求城市最佳的救援路径长度并且这个长度对应的路径有多少条。与此题场景非常类似,那题是用DFS解的,当然此题也可以用DFS解,但是子序列的题一般用DP解比较方便。此题用两个DP数组解题,len[i]表示以num[i]结尾的最长递增子序列的长度,cnt[i]表示以num[i]结尾的最长递增子序列的个数。

[LeetCode] 673. Number of Longest Increasing Subsequence 最长递增序列的个数

class Solution {
public:
    int findNumberOfLIS(vector<int>& nums) {
        int res = 0, n = nums.size(), mxLen = 0;
        vector<int> len(n, 1), cnt(n, 1);
        for (int i = 0; i < n; ++i) {
            for (int j = 0; j < i; ++j) {
                if (nums[i] <= nums[j]) continue;
                if (len[i] == len[j] + 1) cnt[i] += cnt[j];
                else if (len[i] < len[j] + 1) {
                    len[i] = len[j] + 1;
                    cnt[i] = cnt[j];
                }
            }
            if (mxLen == len[i]) res += cnt[i];
            else if (mxLen < len[i]) {
                mxLen = len[i];
                res = cnt[i];
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值