一、建设背景
随着大数据、云计算等技术的不断进步,大模型技术已成为人工智能领域的重要研究方向,其在自然语言处理、计算机视觉、语音识别等领域展现出强大的应用潜力。自2022年11月ChatGPT问世以来,大模型开始备受关注,科技巨头们纷纷推出大模型实验室解决方案。大模型的价值不知在于互联网场景,而在于大模型能力垂直化,能够与具体的业务需求深度融合。
大模型实验室是在学校现有的实验室建设基础上,依托行业标杆企业,聚焦行业大模型产业发展方向,建设一个产学研一体化的合作教学平台,形成“教与学紧密结合、理论与实践紧密结合,学校与企业紧密结合”的创新教育模式。大模型实验室不仅可以赋能院校“双师型”师资队伍建设,还能培养大模型应用开发方面的复合型、创新型人才。
基于产教融合实训基地开放共享应用需要和校企合作项目化特点,建设集教学培训、项目实践、科研于一体的“大模型技术应用实训室”,满足集教学、科研、培训、社会服务于一体的应用、管理与服务需要,形成一批有影响力的社会服务成果,促进科技成果转化和产业化,不断提升学校服务地方经济社会发展的能力。
在当前信息化社会背景下,高职院校作为培养高技能人才的重要基地,面临着培养具有创新能力、实践能力和跨界融合能力的高素质人才的需求。因此,建设大模型技术应用实训室,为学生提供实践平台,对于提升高职院校人才培养质量、推动产学研用深度融合具有重要意义。建设大模型技术应用实训室,有助于培养更多具备大模型技术应用能力的高素质人才,满足社会经济发展的需求。
二、关键技术
模型架构设计与优化:大模型的架构设计至关重要,它决定了模型能否有效地处理海量数据并提取出有价值的信息。同时,模型的优化也是提升性能的关键,包括超参数调整、模型剪枝、量化等技术,以减少计算量、提高推理速度。
预训练与迁移学习:预训练技术使得模型在大量无标注数据上进行学习,从而掌握通用的知识表示。迁移学习则允许将预训练好的模型迁移到新的任务上,通过微调适应特定领域的需求,极大地提高了模型在新任务上的性能。
分布式计算与并行处理:大模型的训练往往需要处理海量的数据和进行复杂的计算,因此分布式计算和并行处理技术成为关键。通过将这些任务分散到多个计算节点上并行处理,可以显著提高训练效率。
数据处理与特征工程:高质量的数据是训练出优秀模型的基础。数据处理包括数据清洗、标注、增强等操作,以提高数据的质量。特征工程则是从原始数据中提取出有意义的特征,以供模型学习使用。
自动化机器学习(AutoML):随着模型规模和复杂度的增加,手动调整超参数和模型结构变得越来越困难。AutoML技术通过自动化地搜索最佳的超参数和模型结构,降低了模型调优的难度,提高了模型性能。
模型压缩与部署:大模型往往具有较高的计算复杂度和存储需求,不利于在实际应用中部署。模型压缩技术如剪枝、量化等可以降低模型的复杂度和大小,便于部署到资源有限的设备上。同时,高效的模型部署技术也是确保模型能够在实际场景中发挥作用的关键。
三、建设目标
1)完善高校大模型技术应用课程体系
提供丰富的大模型课程案例,在人工智能教学资源基础上加入最新的大模型技术、案例等内容,并增加实验、实训环节的比重