前缀和维护

文章探讨了如何利用前缀和在O(n+m)的时间复杂度内解决数列区间和的查询问题。通过实例展示,当线段树和树状数组无法满足高效要求时,如何借助前缀和数组实现每个询问操作的O(1)复杂度,从而达到高效求解的目的。
摘要由CSDN通过智能技术生成

 前缀和维护可以是数列,也可以是矩阵。

 以一个小题为例:给定n个数ai以及m个询问并每次询问一段区间的和。
                            要求:一个O(n+m)的做法。

    要求效率如此之高,看来,强大的树状数组和线段树也无能为力了。

    那么如此一来,前缀和上场了。若想时间复杂度控制在O(n+m),光读一遍就需要O(n),即

每一个询问要求效率为O(1),可怕~~

   但前缀和可以做到,开两个数组a[n]和s[n],前者装数据,后者装前n项和。

   若想求一段区间[l,r]的和,只需用s[r]-s[l],即可解决。

  

#include
   
   
    
    
using namespace std;
int main()
{
   scanf("%d",&n);
   for (i=1; i<=n; i++) scanf("%d",&a[i]);
   for (i=1; i<=n; i++) s[i]=s[i-1]+a[i];
   scanf("%d",&m);
   for (i=1; i<=m; i++)
   {
	   scanf("%d%d",&A,&B);
	   
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值