深度学习之检测模型-Faster RCNN

Faster R-CNN是一种基于深度学习的目标检测模型,通过Region Proposal Network(RPN)实现区域提名,解决了传统方法中的计算瓶颈。RPN与分类、回归网络共享特征,提高效率。文章介绍了RPN、Translation-Invariant Anchors、Multi-Scale Anchors的概念,并详细讨论了损失函数、训练方法以及在PASCAL VOC和COCO数据集上的实验结果,验证了Faster R-CNN在目标检测领域的优越性能。
摘要由CSDN通过智能技术生成

State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet and Fast R-CNN have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network(RPN) that shares full-image net

Faster R-CNN 抛弃了 Selectave Search, 引入了 RPN 网络,使用区域提名,使得分类,回归一起共用卷积特征,从而进一步加速了检测过程。其中Faster RCNN使用了Anchor的思想对在Feature map上进行预处理,产生2w左右的候选框,使得RPN的回归变成了回归到anchor的相对位置,使得网络更加稳定。

思想

首先,Fast RCNN检测网络的主要思想:

  • 使用一个简化的 SPP 层— RoI Pooling 层,操作与 SPP 相似 2. 训练和测试不再分多步
    • a. 不用存储中间特征结果,可使得梯度通过 RoI Pooling 层直接传播
    • b. 分类与回归用 Multi-task 的方式一起训练
  • SVD :使用 SVD 分解全连接层的参数矩阵,压缩为两个规模小很多的全连接层

解决 R-CNN 和 SPP-Net 中 2000 左右候选框带来的重复计算问题。
然后,overfeat虽然是一个端到端的训练过程,最终的网络进行了分类和回归网络多任务,但在预测的时候,仍然采用的是sliding window的思想。计算复杂度同样很大,因此作者提出了一种RPN网络,共享特征提取,使得网络的效率大大提升。


这里写图片描述

Region Proposal Networks
  • 基础网络采用ZF或者VGG,则feature层的深度为256-d和512-d
  • 然后将feature作为reg和cls的基础特征进行预测


这里写图片描述

数字 解释
171 ZF模型在feature层的感受野
228 VGG模型在feature层的感受野
256-d ZF模型feature层的深度
512-d VGG模型feature层的深度
3x3/1x1 feature层后接nxn(n=3)卷积进行特征提取,后面接两个1x1卷积分别对应reg和cls层
k anchor的个数,论文 k=9 ,由3个scale和3个apect ratios组层
4k 对应RPN回归reg层输出的深度:[( x1,y1,w1,h1 ),( x2,y2,w2,h2 ) … ( xk,yk,wk,yk )]
2k 对应RPN分类cls层输出的深度:[( bg1,fg1 ),( bg2,fg2 ) … ( b
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值