基于竞争神经网络的无监督数据聚类(分类)——附代码

目录

参考文献:

1.竞争神经网路介绍:

2.仿真实验:

3. 本文Maltab代码


参考文献:

1.竞争神经网路介绍:

竞争型神经网络是以无教师示教方式进行网络训练的一种神经网络。它的特点是能将输入数据中隐含的特征抽取出来,自动进行学习。网络通过自身训练,自动对输入模式进行分类。竞争型神经网络在结构上一般是由输入层和竞争层构成的两层网络。两层之间各神经元实现双向全连接,没有隐含层,有时竞争层各神经元之间还存在横向连接。在学习方法上,不是以网络的误差或能量函数的单调递减作为算法准则,而是依靠神经元之间的兴奋、协调、抑制、竞争的作用来进行信息处理,指导网络的学习与工作。长期以来,一些研究者提出了基于以上竞争型神经网络模型的许多改进方法,使神经网络模型的功能和性能得到很大提高,这些都为神经网络技术应用于数据挖掘奠定了一定的基础。然而其进一步的发展却受到许多缺陷的限制,主要表现在:

第一,输入模式过于臃肿和训练时间过于漫长,影响了神经网络的训练速度和训练效果。为了解决神经网络的训练规模归于庞大的缺点,有学者利用粗糙集理论对输入数据进行预处理,消除输入模式的冗余属性,从而简化了神经网络的训练规模。但是粗糙集理论的缺点是只能处理离散化的数据,而对连续输入属性无能为力。而在现实的数据库中,大部分是连续性数据或是连续性和离散性相混合的数据,因此在数据处理前必须对数据进行离散化处理,这极大地限制了粗糙集理论在聚类分析中的应用范围。

第二,竞争型神经网络存在“死点”问题,某些神经元在竞争中可能始终未能获胜而成为“死神经元”,不仅造成神经元的浪费,而且造成训练误差偏大,无法达到训练误差的精度要求,不能很好完成它所担负的聚类或分类任务。

2.仿真实验:

首先生成需要聚类的数据,共80个样本,每个样本有2个特征值,所有样本在二维空间中的分布如下:

然后,设置网路神经元的个数,这里设置神经元个数为8个,首先将网路的权重向量至于所有聚类数据的中心,然后开始训练竞争神经网络:

训练完成后,竞争神经网络的权重参数分布在对应的聚类中心,此时完成数据的聚类。如下图所示

输入一个样本,即可查询对应的分类情况,比如输入样本特征值为[0,0.2],则网络输出其对应的分类:

3. 本文Maltab代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值