SCA-BP多输入分类|正余弦优化算法-BP神经网络|Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

 二、实际运行效果:

三、算法步骤:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matalb平台编译,将SCA(正余弦优化算法)BP神经网络结合,进行多输入数据分类预测

  • 输入训练的数据包含12个特征1个响应值,即通过12个输入值预测1个输出值(多变量分类预测,个数可自行指定

  • 自动归一化训练数据,提升网络泛化性

  • 通过SCA算法优化BP神经网络的初始权重、初始偏差等参数

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

 二、实际运行效果:

三、算法步骤:

  1. 准备数据集:首先,准备用于训练BP神经网络的数据集,包括输入特征和对应的标签。

  2. 初始化BP神经网络:初始化一个标准的BP神经网络结构,包括输入层、隐藏层和输出层,确定神经网络的参数和结构。

  3. 使用SCA算法优化BP神经网络:将SCA算法应用于BP神经网络的训练过程中,通过优化神经网络的权重和偏置来提高神经网络的性能。

  4. 定义适应度函数:结合SCA算法和BP神经网络时,需要定义一个适应度函数,用于评估神经网络的性能,例如分类准确率、均方误差等。

  5. 迭代优化:利用SCA算法不断迭代优化BP神经网络的参数,直到达到收敛条件或者训练次数。

  6. 验证和测试:在训练完成后,使用验证集和测试集评估结合了SCA算法的BP神经网络的性能,调整参数以获得更好的结果。

  7. 调参优化:根据验证集和测试集的表现,对神经网络和SCA算法的参数进行调优,以获得最佳的性能。

四、完整程序下载:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值