数字图像处理——数字图像基础

2.1视觉感知要素

韦伯比:ΔIc/I  I表示背景光照强度,ΔI表示闪烁光照强度,ΔIc表示50%时间可辨别闪烁是的增量。韦伯比表示亮度辨别能力。

马赫带:不同灰度区域边界处感知产生的亮度变化,该区域为马赫带

同时对比:眼睛对同一灰度图像在不同背景下感知的亮度变化

2.2光和电磁波谱

λ=c/ν  λ:波长,ν:频率 c:光速(2.998*10^8)

E=hν  电磁波能量,h普朗克常数

可见光:波长0.43μm(紫色)——0.79μm(红色)

辐射:从光源流出的总能量,单位 W 瓦特

光通量:观察者从光源感知的能量,单位 流明 lm

亮度:

2.3图像感知与获取

单传感器获取:传感器获取光照信号,通过二维运动生成图像

线传感器获取:一排传感器通过垂直方向的一维运动生成图像

阵列传感器获取:直接获取图像

2.4图像取样和量化

1、将图像数字化需要取样和量化/

2、图像可表示为f(x,y)

3、对坐标值进行数字化为取样,对幅度值进行数字化为量化

4、动态范围:灰度跨越的值域

5、对比度:一幅图像中最高和最低灰度级间的灰度差

6、存储图像所需的比特数  b=MNk,M,N为像素的行数和列数

7、图像灰度级数  L=2^k,一幅256级图像称为8比特图像

8、空间分辨率:图像中最小可辨别细节测度,单位距离的线对数和单位距离的点数(像素数)是最常用的测度

             像素数 如2048×2048

             每毫米线对数:线对为两个像素点的宽度

             点数/英寸  dpi 

9、灰度分辨率:在灰度级中可分辨的最小变化

图像内插

内插用在图像放大、缩小、旋转和几何校正等任务中

最近邻内插:简单但会产生人为失真

双线性内差:v(x,y)表示待赋灰度值得位置的灰度值 v(x,y)=ax+by+cxy+d  系数由4个最近邻点求出

双三次内插:\sum_{i=0}^{3}\sum_{j=0}^{3}a_{ij}x^{i}y^{j},由16个最临近店求出

2.5像素间的一些基本关系

相邻像素:

(x,y)处的像素p的4邻域 N_{4}(p) 为(x+1,y),(x-1,y),(x,y+1),(x,y-1)(x+1,y),(x-1,y),(x,y+1),(x,y-1)

p的4个对角相邻像素 N_{D}(P) 为(x+1,y+1),(x+1,y-1),(x-1,y+1),(x-1,y-1)

N_{4}(p)N_{D}(P)合称为p的8邻域用 N_{8}(P)表示

 p的相邻像素的图像位置称为p的邻域,如果一个领域包含p,那么称该邻域为闭邻域,否则称该邻域为开邻域。

邻接、连通、区域和边界

邻接:

以二值图像为例,定义集合V={1}

  1. 4邻接:像素q在p的4邻域中,若q和p的值都在V(即像素值都为1),则p和q是4邻接的
  2. 8邻接:像素q在p的8邻域中,若q和p的值都在V(即像素值都为1),则p和q是8邻接的
  3. m邻接(混合邻接):一些像素即可以是4邻接也可以是8邻接,优先选择4邻接

       m邻接满足a)q在 N_{4}(p)中或b)q在 N_{D}(p)且 N_{4}(p)和 N_{4}(q)中没有值在V中的像素。

0 0 0 0 0 0   0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0

0 0 1 0 0 0   0 0 1 0 0 0  0 0 0 1 1 0 0 0

0 0 0 0 0   0 0 0 1 0 0 0 0  0 0 0 1 0 0 0 0

0 0 0 0 0 0   0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0

  4邻接      8邻接       m邻接

连通

定义像素集合S,如果S中的两个像素p和q之间存在一个完全由S中像素组成的通路,则p和q在S中是连通的。对S中的像素p,在S中连通到该像素的像素集称为S的两桶分量。若S仅有一个连通分量,则集合S称为连通集。

区域

另R表示图像中像素的一个子集,若R是一个连通集则R称为图像的一个区域。两个区域R1和R2联合行程一个连通集时,则称R1和R2为邻接区域    。

假设一个图像含有K个不想交的区域,且与图像边界不想接,另令Ru表示K个区域的并集,(R_{u})^{c}(R_{u})^{c}\left ( R_{u} \right )^{c}表示其补集,则Ru的所有点表示图像的前景,\left ( R_{u} \right )^{c}的所有点表示图像背景。

区域R的边界指R中与R的补集中的像素相邻的一组像素。

区域的边界称为内边界,图像边界称为外边界。

边界和边缘不是一个概念。

  距离测度

对做表分别为(x,y)和(u,v)的像素p,q

p和q之间的欧几里得距离定义为

D_{e}(p,q)=[(x-u)^{2}+(y-v)^{2}]^{1/2}

p和q之间的距离D4(城市街区距离)为D_{4}(p,q)=|x-u|+|y-v|

到(x,y)的距离D4小于等于d的像素行程一个中心为(x,y)的棱形。

p和q之间的距离D8(棋盘距离)为 D_{8}=max(|x-u|,|y-v|)

到(x,y)的距离D8小于等于d的像素行程表(,y)的方形

2.6图像处理所用的基本数学工具

1、元素运算和矩阵运算

元素运算即对每个元素做相应的运算,即MATLAB中的.*,.^等

2.线性运算和非线性运算

线性运算的两个性质,加性和同质性

3、算数运算

即图像f(x,y)和图像g(x,y)之间的加减乘除,都是对应像素运算   

4、集合运算和逻辑运算

令灰度图像的元素由集合A表示,集合A的元素形式是三元组(x,y,z),x,y表示空间坐标,z表示灰度值

A的补集定义为

  

元素数量相同的两个灰度集合A和B的并集表示为

A \cup B={max(a,b)|a \in A,b\in B}

笛卡尔积  X\times Y={(x,y)|x \in X,y\in Y }

逻辑运算“与” AND "\wedge ";“或” OR "\vee " “非” NOT "\sim " “异或” XOR  

“与” AND "\wedge ";或 OR"\vee " ;非 NOT "\sim "; 异或 XORAND "\wedge " OR"\vee ; NOT "\sim "; XOR 异或

5、空间运算

单像素运算:s=T(z)

邻域运算:输出图像中对应的元素由输入图像中邻域像素按照一定的规则运算得到

几何变换:(1)像素坐标的空间变换(2)灰度值内插,即空间变换后的像素赋灰度值

                     \begin{bmatrix} x'\\ y' \end{bmatrix}=T\begin{bmatrix} x\\ y \end{bmatrix}

                    放射变换的T用齐次坐标来表示  \begin{bmatrix} a1 &o1 &x \\ a2 &o2 &y \\ 0&0 &1 \end{bmatrix}

图像配准:用于对齐同一场景的两幅或多福图像。需要得到约束点(基准点)

6 向量与矩阵运算

向量的范数 ||z||=(z^{T}z)^{1/2}  表示向量的长度

点向量z和a之间的欧几里得距离D(z,a)为欧几里得向量范数

D(z,a)=||z-a||=[(z-a)^{T}(z-a)]^{1/2}=[(z1-a1)^{2}+(z2-a2)^{2}+...+(zn-an)^{2}]^{1/2}

7、图像变换

二维线性变换通式 T(u,v)=\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}f(x,y)r(x,y,u,v)     f(x,y)表示输入图像,r(x,y,u,v)称为正变换核

f(x,y)=\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}T(u,v)s(x,y,u,v) s(x,y,u,v)为反变换核

如果 r(x,y,u,v)=r_{1}(x,u)r_{2}(y,v)则可以说正变换核是可分离的,如果r_{1}(x,u)作用等同于r_{2}(y,v),那么称变换是对称的

傅里叶变换: r(x,y,u,v)=e^{-j2\Pi (ux/M+vy/N)}

                      s(x,y,u,v)=\frac{1}{MN}e^{j2\Pi (ux/M+vy/N)}      j=\sqrt{-1}

8、图像灰度和随机变量

z_{i},i=0,1,2,...,L-1表示一幅MxN数字图像中所有可能的灰度值,灰度级z_{i}在这幅图像中出现的概率p(z_{k})出现的概率为

p(z_{k})=\frac{n_{k}}{MN}   nk为zk出现的次数

平均灰度为  m=\sum_{k=0}^{L-1}z_{k}p(z_{k})

灰度方差为 \sigma ^{2}=\sum_{k=0}^{L-1}(z_{k}-m)^{2}p(z_{k})

第N阶中心距为 \mu _n(z)=\sum_{k=0}^{L-1}(z_k-m)^np(z_k)

   习题

2.1   同时对比现象

2.5   a)每毫米像素点  2048/50  每毫米线对 (2048/50) /2=20

       b)每英寸像素点2048/2=1024dpi

2.6

相机拍摄的区域边长为d

d/7=500/35  d=100mm

即边长100x100的区域像素数为1024x1024  则每毫米像素数为1024/100=10  每毫米线对数10/2=5

2.8

CCD边长 x=500/1000 x200=1mm

每毫米像素数n=5x2=10

500mm像素数为 500x10=5000

感测元素的数量为5000x5000

2.9

1024x1024x(8+2)x500/10^6

1024x1024x(8+2)x500/10^9

2.10

竖直电视线为 1125x16/9=2000,

每帧用时 1/60x2=1/30s

每帧图像大小为 a=  1125x2000x24比特

两小时共n= 3600x2x30帧

所以共需axn比特

2.11

z>n 则有n个MN,a1=a mod MN 表示z取n+1这个平面上的元素数

x=(a1) mod M

y=(a1-x)/M

z=(s-x-my)/MN

2.12

f(x,y)=i(x,y)r(x,y)=i(x,y)*1

\Delta G=(255+1)/2^k=8

k=5

2.14

S1和S2是8邻接和m邻接

2.18

a)4通路长度 无,8通路长度4,m通路长度 5

b)4通路长度6 ,8通路长度4,m通路长度6

2.19

a)  对p(x,y)和q(a,b),最短D4为|x-a|+|y-b|

b)不唯一

2.20

最短D8位((x-z)^2+(y-b)^2)^{1/2}

唯一  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值