图像的取样和量化
为了产生一幅数字图像,需要把连续的感知数据转化为离散的数字形式。这种转化包括两种处理:取样和量化。
沿着直线AB等间隔地取样,为了形成数字函数,灰度值也必须进行离散化(量化)。对一幅图一行一行地进行量化后就可以得到数字图像,量化所能达到的精细程度除了离散级数以外,也强烈地依赖于取样信号的噪声。在实践中,取样的方法是取决于传感器的配置。传感器输出的量化就完成了产生数字图像的过程。
当传感阵列用于图像获取是,没有运动并且阵列中传感器数量决定了两个方向上的取样限制。
很明显,数字图像的质量在很大程度上取决于取样和量化中所用的样本数和灰度级。在选择这些参数时,图像内容是一个重要的考虑因素。数字图像就是一个二维函数,它的坐标和幅值都是整数。M,N的值没有除了必需取整数以外,没有什么其他特殊的限制。灰度级数典型地取为2的整数次幂。
灰度跨越的值域称为动态范围,是系统中最大可度量灰度和最小可检测灰度之比。其上限取决于饱和度,下限取决于噪声。动态范围有系统所能表示的最低和最高灰度级来确定的,也是图像具有的动态范围。与这一概念密切联系的是图像的对比度,一幅图像中最高和最低灰度级间的灰度差称为对比度。当一幅图像中可感知的数值有高的动态范围是,我们认为图像具有高的对比度,相反,具有低动态范围的图像就很呆滞。
空间和灰度分辨率
空间分辨率是图像中可辨别的最小细节度量。数量上,空间分辨率可以有很多方法来说明,其中每单位距离线对数和每单位距离点数(像素数)是最通常的度量。广泛使用的定义是每个单位距离可分辨的最大线对数,例如,每毫米100个线对。
灰度分辨率是指在灰度级中可分辨的最小变化,即用于量化灰度的比特数。例如,一幅图像被量化为256级的图像有8bit的灰度分辨率。伪轮廓在以16或者是更少级数的均匀设置的灰度级显示的图像中十分明显。