为何要做数据归一化处理?原因如下:
1、提高训练速度,帮助训练收敛,避免梯度消失/爆炸;
2、帮助模型专注数据真正的关联性,提高模型最终表现;
对数据结果有很大的提高。
模型优化策略其他策力:
数据清洗
数据归一化
非对称数据优化
强调权重比,平均分布为0;
非对称数据训练与优化
数据严重不平衡,容易过拟合达到99.99%,解决上述问题方法:
1、数据增强扩大比例较低的样本的数量;
2、修改损失函数赋予比例较低样本更高的权重。
如何优化超参数?进化算法最为常用,需要不断试错,以下方法:
1、快速把模型搭起来,初步跑通获取识别结果;
2、对识别结果分析,然后反复迭代优化(结合行业经验),直到获到一个满意的结果;
3、通过数量级搜索或者进化算法对第二步进行提速。