CNN
放下扳手&拿起键盘
学成文武艺,货卖帝王家。
展开
-
膨胀卷积操作
前言:膨胀卷积操作是指将卷积核扩张到指定尺寸,并将原卷积核中没有占用的区域用零填充(如下图所示)。膨胀卷积计算公式:膨胀的卷积核尺寸 = 膨胀系数*(原始卷积核尺寸-1)+1代码实现:import tensorflow as tfimport tensorflow.contrib.slim as slimdef conv_bn_relu(x,out_channel,...原创 2019-11-09 12:05:18 · 2168 阅读 · 1 评论 -
线性模型的局限性
1.线性模型的局限性1-1.线性模型的定义:假设一个模型的输出y和输入xi满足如下关系,则这个模型就是线性 模型。当模型的输入只有一个的时候,x和y形成了二维坐标系上的一条直线。当模型的输入为n个的时候,x和y形成了n+1维空间中的一个平面。1-2.线性模型的特点:任意线性模型的组合任然是线性模型。1-3.线性模型的适用对象:线性可分问题。(通过直线(或者高维空间的平面)划分。)1-4.线性模型的...原创 2018-03-04 10:57:09 · 6410 阅读 · 1 评论 -
CNN---权值共享
1.定义: 权值共享指由单个参数(权重)控制多个连接,亦可解释为在连接强度之间施加相等的约束。通过权值共享,模型可以获取非常小的计算成本。2.直观理解:如上图所示,设Image为一个5*5的矩阵A,卷积核为一个3*3的矩阵B,输出特征图为3*3的矩阵C,那么有:C11= A11*B11+ A12*B12+A13*B13+…+A31*B31+A32*B32+A33*...原创 2018-12-24 16:36:55 · 6711 阅读 · 0 评论 -
CNN---Dropout
1.概念: Dropout是解决模型过拟合的一种关键技术。通过Dropout可以防止网络单元中的过度适应问题。Dropout的实现过程是:在训练期间,从大量的不同程度的“稀疏”网络中提取样本数据,在测试阶段,通过简单地使用具有较小权重的单个“非稀疏”网络,从而可以很容易地近似平均所有这些“稀疏”网络的预测效果。2.代码实现:import numpy as npd...原创 2018-12-31 21:18:52 · 664 阅读 · 0 评论 -
模型参数量(Params)和模型每秒浮点运算速度(Flops)
1.对卷积层而言,有:模型参数量计算公式:(K_h * K_w * C_in)* C_out模型每秒浮点运算速度计算公式: (K_h * K_w * C_in * C_out) * (H_out * W_out)其中:K_h和K_w 代表了kernel的input_size, C_in是input feature map的channel数,C_out是output feat...原创 2019-09-12 19:07:07 · 4330 阅读 · 3 评论