机器学习基础理论‘
williamyi96
PhD Student on Machine Learning, Optimization, Federated Learning, and Data-Efficient Learning.
展开
-
机器学习(3)--正则化
正则化–《机器学习》课程笔记过拟合问题 如图,第一个就是一个欠拟合(underfitting)的实例,第三个就是一个过拟合的实例(overfitting),往往过拟合和欠拟合都不能很好地反映逻辑回归以及线性回归问题的情况。 如图: 面对这种问题,我们可以采取两种方法来进行解决:丢弃一些不能帮助我们正确解决问题的特征,或者是手工选择保留哪些特征,使用模型选择的算法来帮忙(如PCA–主成分分析算原创 2016-10-07 11:29:40 · 373 阅读 · 0 评论 -
机器学习(1)--梯度下降与线性回归
《机器学习》课程学习笔记什么是机器学习机器学习的原始定义(Arthur Samuel)为在进行特定编程的情况下,给予计算机学习能力的领域。 在后来,卡内基梅隆大学的Tom Mitchell 将机器学习定义为:一个程序被认为能从经验E中学习,解决任务T,达到性能度量值P,当且仅当有了经验E之后,经过P评判,程序在处理T时的性能有所提升。学习的主要内容这门课程的视野很宽,主要原创 2016-10-04 21:54:49 · 841 阅读 · 0 评论 -
机器学习(2)--逻辑回归
逻辑回归–《机器学习》课程学习笔记分类问题(Classification)如前所述,在分类问题中,我们要预测的变量y是一些离散的值。 我们之前已经学过了线性回归的变化形式来解决分类问题的方法,我们接下来会介绍一种更广泛使用的学习算法–逻辑回归(Logistic Regression) 值得注意的是,逻辑回归算法不是回归问题,而是分类问题。 首先我们从二元的分类问题开始讨论: 我原创 2016-10-07 10:44:33 · 467 阅读 · 0 评论 -
基于Tensorflow的机器学习(3) -- KMeans and NN(Nearest Neighbors)
Remains原创 2017-10-22 18:03:24 · 449 阅读 · 0 评论 -
基于Tensorflow的机器学习(4) -- 随机森林
Remains原创 2017-10-22 22:08:06 · 3066 阅读 · 0 评论 -
生成模型 (VAE/GANs) 概览
参考 http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf 就够了, 特别是 variational auto-encoder 讲得特别地直观而且清晰。原创 2019-05-12 14:10:51 · 618 阅读 · 0 评论