基于图像patch的CNN分类算法
该算法是描述一类图像分类问题,它有如下特点:
如图,主动脉弓和心脏,绿色部分相同,而黄色部分不同。传统的CNN算法,区分效果不佳。在Multi-Instance Multi-Stage Deep Learning for Medical Image Recognition这篇文章中,作者针对这种场景提出了解决方法。
训练:将整张片子切分成patches,每个patch的label与整片的label相同,将这些patches放入CNN分类器训练,在反向传播时,通过修改损失函数:每个片子中对自己类别相应最高的patch才会贡献。如下L1是标准CNN的损失函数,L2是PCNN的损失函数: