训练结果到底好不好【神经网络模型优化】如何根据 训练和验证 准确度 / 损失 曲线诊断优化我们的学习模型

在进行深度学习神经网络的训练过程中,为了提高网络模型的准去度,这里就其中的一些技巧进行概要描述大。

然而在实际中,在原理和方法几乎定型的时候,我们往往需要针对自己的任务和自己设计的神经网络进行debug才能达到不错的效果,这也就是一个不断调试不断改进的一个过程。这其实也类似于制造业里面的制造工艺。

咱们古人练就长生不老丹,便是典型的调参过程。

(题外话:长生不老丹里面一味非常重要的药材叫霍山石斛,我家就是种植销售霍山石斛的,哈哈哈哈哈啊哈哈)

那么到底如何去Debug呢?

以下的内容部分来自CS231n课程,以及汇总了自己在训练神经网络中遇到的很多问题。

让我们先谈点简单的,如果不考虑debug,采取什么方式可以提升我们的训练精度呢?

吴恩达曾提出了这几点:

  • 寻找更多的数据
  • 让网络层数更深一些
  • 在神经网络中采取一些新的方法
  • 训练的时间更长点(更多的迭代次数)
  • 改变batch-size
  • 尝试使用正则化技术(权重衰减)
  • 权衡结果的偏置和方差(bias and variance)
  • 使用更多的GPU

以上这些方法是神经网络本身的通用的方法,而具体细化到自己所在的任务时,我们需要对我们此刻所做的任务进行单独的Debug,来寻找问题所在。

如何Debug?和编写程序类似,神经网络中的超参数相当于我们的代码,而神经网络的输出信息相当于代码执行的结果。

超参数:超参数是训练神经网络必不可少的变量,常见的超参数有:

  • 学习率(如何设置学习率)
  • batchsize
  • 权重衰减系数
  • dropout系数
  • 选择适用的优化器
  • 是否使用batch-normalization
  • 神经网络设计的结构(比如神经网络的层数,卷积的大小等等)

如何去调整这些参数呢?当然是通过观察神经网络的输出信息来做出相应的修改,而观察神经网络输出信息的利器就是可视化。

输出信息可视化

观察训练过程中各种参数的变化是非常重要的,首先最重要的当属损失曲线(loss curves)。

损失曲线

上图所示是一个比较“理想”的损失曲线变化图,在训练开始阶段损失值下降幅度很大,说明学习率合适且进行梯度下降过程,在学习到一定阶段后,损失曲线趋于平稳,损失变化没有一开始那么明显。曲线中的毛刺是因为batch-size的关系,设置越大,毛刺越小,毕竟每个batch-size的数据相当于不同的个体。

上图也是一个正确的损失曲线,虽然看到变化趋势并不是很明显,但仍然可以看出曲线在慢慢下降,这个过程其实是一个fune-turning的阶段。承接于上一幅图的损失曲线,这幅图的损失值已经很小了,虽然毛刺很多,但是总体趋势是对的。

那么什么才是有问题的去曲线呢?借用CS231n中的PPT:

上图中,左上角的图像是显然的学习不到任何东西(可能这样看起来比较困难,可以适当smooth一下),而第二个则是典型的过拟合现象;第三个是更严重的过拟合;第四个损失值没有趋于平稳,很有可能是没有训练够;第五个经历了比较长的iterate才慢慢收敛,显然是初始化权重太小了;而最后一个越学习损失值越大,很有可能是“梯度向上”了。

除此之外,其实上图还可以发现更多的错误:左上一和二:没有对数据集进行洗牌,也就是每次训练都是采用同一个顺序对数据集进行读取;右上一:训练的过程中突然发现曲线消失了,为什么?因为遇到了nan值(在图中是显示不出来的),但我们要意识到这个问题,这个问题很有可能是模型设置的缘故;最后一个图显示较小比例的val集设置会导致统计不准确,比较好的val设置比例是0.2。

上图左边的曲线图可以明显看到,一共训练了五次(五条曲线),但是在训练过程中却发现“很难”收敛,也就是神经网络学地比较困难。为什么呢?原因很简单,很有可能使我们在softmax层之前加入了非线性激活函数(比如RELU),本来softmax函数希望我们输入负数或者正数(负数输入时Softmax期望输出比较小,而输入正数时softmax其实输出比较大),但是relu只有0和1,那么输入到softmax会造成信息的丢失,造成学习异常困难。

总结下,如果你认为你的神经网络设计没有明显错误的,但损失曲线显示仍然很奇怪,那么很有可能:

  • 损失函数采用的有问题
  • 训练的数据的载入方式可能有问题
  • 优化器(optimizer)可能有问题
  • 一些其他的超参数设置可能有问题

总而言之,损失曲线是观察神经网络是否有问题的一大利器,我们在训练过程中非常有必要去观察我们的损失曲线的变化,越及时越好!

正则化

除了损失函数曲线,准确率曲线也是我们观察的重点,准确率曲线不仅可以观察到我们的神经网络是否往正确方向前进,更主要的是:观察损失和准确率的关系。因为我们在衡量一个任务的时候使用的评价标准(metric)和使用的损失函数往往是不相同的,比较典型的例子是:

图像分割中的IOU评价标准DICE损失函数

"Dice" is a a metric for model evaluation equal to intersection(A,B)/(A+B). Similar to IoU (IoU = intersection(A,B)/union(A,B)), it is used to assess a quality of image segmentation models. "Accuracy" is not really good for this task. For example, in this competition, you can quite easily get 99.9% accuracy of predicted pixels, but the performance of the models may be not as great as you think. Meanwhile, such metrics as dice or IoU can describe your models reasonably well, therefore they are most often used to asses publicly available models. The implementation of the metric used for score evaluation in this competition takes some time and requires additional post-processing, such as mask splitting. Therefore, it is not so common for quick model evaluation. Also, sometimes "soft dice" (dice with multiplication instead of intersection) is used as a loss function during training of image segmentation models.

当然,还有随机失活和权重衰减两个比较重要的超参数,这两个参数通过观察损失曲线观察是不明显滴,只有通过特定的评价标准曲线,设置好标准再进行比较,才可以判断出是否需要添加。

标准化和批标准化

标准化可能已经是训练神经网络的一个标准流程了,不论是在数据中进行标准化处理还是在网络中添加批标准化层,都是一种标准化的方法(两种使用一种即可)。

但是标准化技术通常只用于分类(以及衍生的一些应用),但并不适合与那种对输入图像大小比较敏感以及风格迁移生成类的任务,不要问为什么,结果会给你答案。

 

参考: https://oldpan.me/

           https://www.zhihu.com/question/62599196

           https://www.learnopencv.com/batch-normalization-in-deep-networks/

嗯,用户问的是关于过拟合的检测方法。首先,我需要回忆一下过拟合的基本概念。过拟合是指模型训练数据上表现很好,但在测试数据或新数据上表现差的情况,通常是因为模型过于复杂,记住了训练数据的噪声细节,导致泛化能力差。 接下来,用户可能需要知道如何判断自己的模型是否过拟合了。检测过拟合的方法可能包括观察训练验证准确率/损失曲线,如果训练误差持续下降而验证误差开始上升,可能就是过拟合。另外,还有交叉验证学习曲线分析等方法。 然后,可能需要具体步骤或者指标。比如,比较训练测试集的性能差异,如果训练准确率远高于测试集,可能存在过拟合。另外,检查模型复杂度是否过高,比如参数数量、树模型的深度等。 用户可能还会关心如何区分过拟合其他问题,比如欠拟合。欠拟合是训练测试表现都不好,而过拟合是训练好但测试差。这时候可能需要解释两者的区别。 另外,可能需要提到一些预防措施,比如正则化、早停法、数据增强等,但用户问的是检测,所以重点应放在如何识别过拟合的存在,而不是如何解决。 还要注意用户可能的实际应用场景,比如他们在做机器学习项目时遇到了高训练准确率但低测试准确率的情况,想确认是否过拟合。可能需要给出具体的例子或步骤,比如绘制学习曲线,使用交叉验证结果来判断。 是否需要提到一些工具或库的使用呢?比如在Python中用matplotlib绘制训练验证曲线,或者用scikit-learn中的交叉验证函数。不过用户的问题更偏向于理论方法,可能不需要具体的代码,但简要说明方法的应用是可以的。 还要考虑用户的背景,可能有一定的机器学习基础,但需要清晰的步骤解释。要避免过于专业的术语,用通俗的语言解释概念,比如用“训练数据”“新数据”来代替“训练集”“测试集”可能会更易懂。 总结一下,回答的结构应该是先定义过拟合,然后列举检测方法,包括观察训练验证指标、学习曲线分析、交叉验证、检查模型复杂度,以及与其他问题的区别。可能还要提到一些实际操作的例子,帮助用户理解如何应用这些方法。 以下是**过拟合的检测方法**及其核心逻辑的逐步解析: --- ### **1. 基础定义** **过拟合(Overfitting)**:模型训练数据上表现极佳(如高准确率),但在新数据(测试集或实际场景)上表现显著下降,本质是模型过度适应训练数据中的噪声细节,导致泛化能力不足。 --- ### **2. 核心检测方法** #### **方法1:观察训练验证指标对比** - **步骤**: 1. 将数据集划分为**训练集****验证集**(如7:3比例)。 2. 监控模型训练验证集上的**损失(Loss)****准确率(Accuracy)**。 - **判断依据**: - **过拟合标志**:训练损失持续下降,验证损失先下降后上升(或停滞),形成“剪刀差”(如图1)。 - **训练准确率 >> 验证准确率**(例如训练准确率95%,验证准确率70%)。 #### **方法2:学习曲线分析** - **步骤**: 1. 逐步增加训练数据量,分别记录训练验证集的表现。 2. 绘制学习曲线(横轴为数据量,纵轴为准确率/损失)。 - **判断依据**: - **过拟合曲线**:训练准确率随数据量增加持续上升,验证准确率上升后趋于平缓,两者差距大(如图2)。 - **理想曲线**:训练验证准确率随数据量增加逐渐收敛到相近值。 #### **方法3:K折交叉验证** - **步骤**: 1. 将数据分为$K$个子集(如$K=5$),轮流用$K-1$个子集训练,剩余1个验证。 2. 计算$K$次验证结果的平均值方差。 - **判断依据**: - **过拟合标志**:交叉验证结果方差大(模型对数据划分敏感),且平均验证指标显著低于训练指标。 #### **方法4:检查模型复杂度** - **步骤**: 1. 对比不同复杂度的模型(如增加神经网络层数、决策树深度)。 2. 观察验证集表现随复杂度变化的趋势。 - **判断依据**: - **过拟合标志**:模型越复杂,验证集表现先提升后恶化(如图3)。 --- ### **3. 过拟合 vs 欠拟合** | 现象 | 过拟合 | 欠拟合 | |-----------------------|---------------------------------|---------------------------------| | **训练集表现** | 极高(接近100%) | 较低(如50%) | | **验证集表现** | 显著低于训练集 | 与训练集相近但整体差 | | **原因** | 模型复杂度过高/训练数据不足 | 模型过于简单/训练不足 | | **解决方法** | 正则化、数据增强、早停法 | 增加模型复杂度、延长训练时间 | --- ### **4. 典型案例分析** #### **案例1:图像分类任务** - **现象**:ResNet-50在训练集上准确率98%,验证准确率65%。 - **检测**: - 绘制损失曲线,发现验证损失在10个epoch后开始上升(过拟合)。 - 使用数据增强(旋转、裁剪)后,验证准确率提升至82%。 #### **案例2:文本分类任务** - **现象**:BERT模型训练集F1-score为0.95,测试集F1-score为0.72。 - **检测**: - 交叉验证方差高达0.15(过拟合)。 - 添加Dropout层(概率=0.2)后,测试集F1-score提升至0.85。 --- ### **5. 工具辅助检测** - **TensorBoard/PyTorch Lightning**:实时监控训练验证曲线。 - **scikit-learn的`learning_curve`函数**:自动生成学习曲线。 - **模型可视化工具(如Netron)**:检查参数规模是否合理。 --- ### **6. 总结:检测流程** 1. **划分数据集**:确保验证集独立于训练集。 2. **监控指标**:重点关注训练验证表现的差距。 3. **交叉验证**:降低数据划分偶然性的影响。 4. **调整复杂度**:验证模型是否“过于强大”。 5. **结合业务场景**:过拟合的容忍度因任务而异(如医疗模型需严格避免)。 --- 通过以上方法,可系统化诊断过拟合,并为后续优化(如正则化、数据增强)提供明确方向。
最新发布
03-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值